

Wall-mounted condensing boiler

THEA** MANUAL VERS. 11/2020 - REV. 0

TABLE OF CONTENTS

		-Filling the system	19
General requirements	2	-Connecting the condensate line	19
-EC conformity declaration	2	-Connection to the mains gas supply	20
-General information	2	-Connection to the mains electrical system	21
Use and operation	3	-Combustion gas evacuation	
-Description of the boiler	3	system: compatible applications	22
-Components	3	-Combustion gas	
-lanition	4	evacuation system: installation	23
-Interface description	4	-Air intake and combustion gas evacuation	
-Stand-by Main menu	5	system: important information	25
-Operation Main menu	6	Adjustment and maintenance	26
-Season selection	7	-Preliminary maintenance operations	26
-Temperature regulation	7	-General maintenance operations	26
-Information menu	8	-Service function	26
-Operation with room thermostat	10	-Data plate	28
-Operation with outdoor probe	10	-Power adjustment	28
-Operation with cronothermostat		-Testing the gas supply dynamic pressure	29
Open-therm	10	 Heating power adjustment 	30
-Special functions	11	-Analysis - Checking and regulating	
-Faults	12	combustion	31
-Fault codes table	13	-Changing gas type	32
Installation	14	-Accessing the configuration menu	33
-Operation diagram	14	-Configuration menu	35
-Three-way boiler diagram	14	-Installation	37
-Electrical wiring diagram	15	-Installation and configuration	
-Graphs for the head available		of external temperature sensor	38
to the system	16	-Configuring the climate curve	
-Installation	16	from those available	39
-Fastening the boiler to the wall	17	-Special functions	40
-Layout of connections	18	-Thermostat post circulation/ventilation	
-Plumbing the boiler	18	function	41
-Connecting filling tap for central heating		- Deaeration function	41
only boilers	19	-Technical Data sheet	41

GENERAL REQUIREMENTS

EC CONFORMITY DECLARATION (ACCORDING TO ISO/IEC 17050-1)

G20 Engineering srl estabilished in Loc. Campogrande, 13 - Carpaneto Piacentino whose processes of design, manufacturing and after-sales service are in compliance with requirements of UNI EN ISO 9001:2008 - DECLARES that THEA boilers are in compliance with European Directives and with European Delegates regulations.

Chief Executive Marco Rapaccipii

CE CERTIFICATES ARE AVAILABLE ON OUR WEBSITE www.produzionecaldaie.it

GENERAL INFORMATION

This manual, supplied with every boiler, should be considered as an integral component as it contains instructions for the correct, safe and appropriate installation, use and maintenance of the system.

The manual must always be kept by the user of the boiler and made available for the installation and/or maintenance technicians to consult. It must also accompany the boiler if it should be moved or otherwise transferred.

The manufacturer shall not be held responsible for any damage caused by failure to follow the instructions contained in this manual, nor:

If the boiler is used for purposes other than those for which it was built.

If any part or circuit of the boiler is modified.

If accessories or kits not approved by the manufacturer are installed.

If ordinary and extraordinary maintenance is not performed by qualified personnel.

If applicable technical and legal requirements have not been observed during installation and maintenance of the boiler.

WARNING!

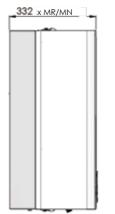
If the boiler should cease to function or not function correctly, deactivate it immediately by turning it off and then shutting off the gas supply. Do not attempt any repairs or direct work on the boiler.

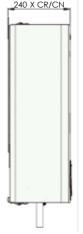
Only personnel with the necessary qualifications and licenses must perform maintenance on the boiler. Any repairs must be performed using only original parts and accessories.

SYMBOLS USED IN THE MANUAL:

Advice, suggestion, note

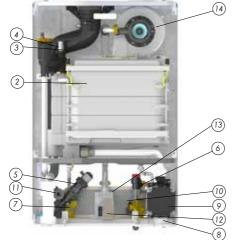
Important information, indications of methods and operations which could compromise correct operation of the boiler and create a hazard.


DESCRIPTION OF THE BOILER

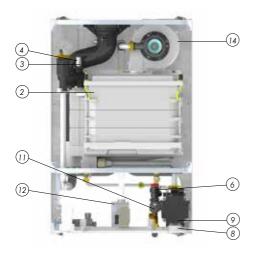

The range of THEA wall-hung boilers is updated to the TheA++ model. A perfect, powerful, reliable, ecological machine, equipped with a condensing high efficiency heat exchanger, entirely made in Italy.

Compared to the previous version, we have updated the electronics and the user interface, making it more elegant and intuitive, while keeping the boiler's performance unchanged.

Pict. 1



COMPONENTS


Fig. 2

THEA++ MR CR KONDENS

- 2) HEAT EXCHANGER
- 3) SAFETY SENSOR
- 4) CH PROBE
- 5) 3WAY GROUP
- 6) SAFETY VALVE
- 7) DHW IMMERSION PROBE
- 8) PRESSURE GAUGE
- 9) CIRCULATOR UNIT
- 10) DHW PRIORITY DEVICE
- 11) PRESSURE TRANSMITTERS
- 12) GAS VALVE
- 13) SECONDARY HEAT EXCHANGER
- 14) FAN

Pict. 3

THEA** MN CR KONDENS

- 2) MAIN HEAT EXCHANGER
- 3) SAFETY SENSOR
- 4) CH PROBE
- 5) -
- 6) SAFETY VALVE
- 7) -
- 8) PRESSURE GAUGE
- 9) CIRCULATOR UNIT
- 101 -
- 11) PRESSURE TRANSMITTER
- 12) GAS VALVE
- 13) -
- 14) FAN

IGNITION

Turn on the boiler's electrical supply at the switch, which must be installed on the power supply line to the boiler. The LCD display (with blue backlight) will turn on immediately, showing the two-digit software version number loaded on the microprocessor for a few seconds, while an automatic check is performed on the conditions of the system and installed devices. When this stage has finished, if no faults are present, the last page of the MAIN MENU to be stored is displayed on the LCD (the one being displayed when the power was turned off).

- 1. ON/OFF BUTTON
- 2. SUMMER/WINTER BUTTON
- 3. RESET BUTTON
- 4. INFORMATION/CONFIGURATION BUTTON
- 5. DHW TEMPERATURE DECREASE
- 6. DHW TEMPERATURE INCREASE
- 7. CH TEMPERATURE DECREASE
- 8. CH TEMPERATURE INCREASE

INTERFACE DESCRIPTION

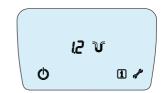
to be selected and modified as well as their buttons which are matched unequivocally to relative values to be displayed is extremely a specific function indicated on the display. simple. It is composed of a large backlit Consult the relevant sections to get LCD which displays all symbols necessary for explanations on the symbols and the possible communicating the boiler's status in a simple operating modes.

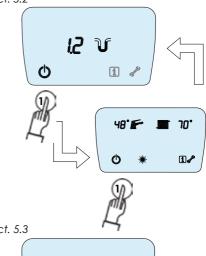
The interface allowing all operating parameters and immediate way, together with a series of

"STAND-BY" MAIN MENU

When the boiler is turned on, two operating Pict. 5.1 modes are possible. These constitute the MAIN MENU from which it is possible to set any operating mode required or view the boiler status at any time. The characteristics of the possible options for each of the MAIN MENU pages are given below:

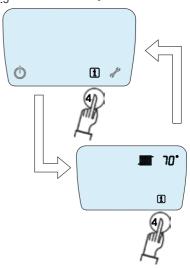
Page 1 - STAND-BY (Pict. 5.1)


In this mode the device is powered on but all functions regarding the supply of domestic hot water or central heating are inactive. Pict. 5.2 In this mode the central heating system pressure is displayed (in boilers with pressure transmitter) and the MAIN MENU can be entered by pressing button 1; to go back to the starting page (STAND-BY) press button 1 again (Pict. 5.2)


By pressing button 4, the **INFORMATION** MENU is accessed; to go back to the starting page, press button 4 again (Pict. 5.3)

Consult the relevant chapters for menu exploring and menu functions: "FUNCTION", "INSTALLER MENU".

When in the STAND-BY mode, all fault indication modes remain active as do the main maintenance functions for the diverter valve (when fitted) and the circulator unit Pict. 5.3 together with the ANTI-FROST function.



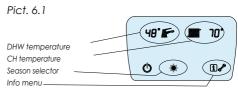
In standby/off mode the boiler is inactive but its electricity supply is still connected!

"OPERATION" MAIN MENU

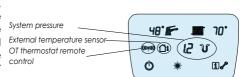
The OPERATION page is the main page which *Pict. 6.1* is always displayed during normal operation of the boiler. Symbols regarding the following items are always displayed on this page:

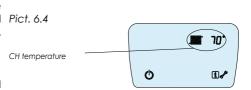
DHW temporary of the page is the main page which *Pict. 6.1* is always displayed on this page.

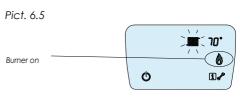
Boilers with domestic hot water production

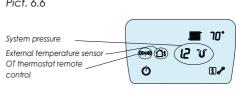

- The selected season.
- The DHW temperature set.
- The temperature of the water in the CH circuit.
- The INFORMATION menu access symbol.
- The INSTALLER menu access symbol.
- The standby/off menu access symbol. Burner on (Pict. 6.1)

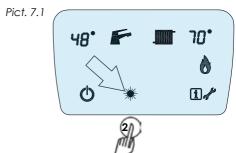
When the burner is lit and running in order to produce domestic hot water, the tap symbol flashes and the temperature of the supplied domestic hot water is displayed. During Pict. 6.3 heating of the central heating circuit water, the radiator symbol flashes alternatively to the C.H. temperature: in both cases, the flame symbol is always displayed (Pict. 6.2). Based on whether devices such as the pressure sensor, external temperature sensor and OT timer thermostat are installed, the following are displayed, respectively: the pressure of the central heating circuit with relative symbol, the external sensor present symbol Pict. 6.4 and the OT timer thermostat present symbol. (Pict. 6.3).

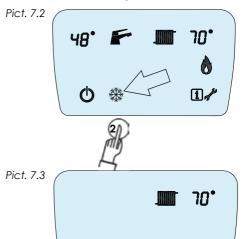

Central-heating only boilers


- The temperature of the water in the CH circuit.
- The INFORMATION menu access symbol.
- The INSTALLER menu access symbol.
- The standby/off menu access symbol. (Pict. 6.4)


When the burner is operating the flame signal is displayed with the radiator symbol flashing (Pict. 6.5). Based on whether devices such as the pressure sensor, external temperature sensor and OT timer thermostat are installed, the following are displayed respectively: the pressure of the central heating circuit with relative symbol and the OT timer thermostat present symbol. (Pict. 6.6).




SEASON SELECTION


The boiler has two operating modes, which *Pict. 7.1* depend on the basic configuration, in response to the external temperature or the user requirements. These modes can be selected from the OPERATION page:

- Boilers with domestic hot water production SUMMER mode deactivates all central heating functions, maintaining only domestic hot water production. When the boiler is in this mode the SUN symbol is displayed on the function page (Pict. 7.1).
- WINTER mode, in which all central heating *Pict. 7.2* and domestic hot water production functions are active. When the boiler is in this mode the SNOWFLAKE symbol is displayed on the function page (Pict. 7.2).
- To select the desired mode, press button 2.

Central-heating only boilers

The season selection option is not available in central heating only boilers. The device can therefore be in standby (Pict. 7.1) or else operational, ready to supply the only SERVICE which it has been manufactured for (Pict. 7.3). *Pict.* 7.3

TEMPERATURE REGULATION

Appliances for DHW production

It is possible to adjust DHW temperture and CH water temperature; the set temperature value is reached and maintained during requests, thus allowing the required comfort in both cases. The temperature supplied for both modes is shown continuously on the display near the relevant symbol when the functions are active: the radiator for CH, the tap for DHW.

During the waiting periods, the DHW temperature displayed is the set one.

DHW temperature adjustment

Press one of the two buttons located above the tap symbol (5-6); the set and displayed temperature value starts flashing, then to increase the DHW temperature, press button (6). Each press will increase temperature by 1°C. To decrease DHW temperature press button (5). Each press will decrease temperature by 1°C.

Once the desired temperature value has been identified, do not press keys 5 and 6 anymore; the new heating fluid temperature value flashes for 5 seconds and is automatically stored and shown on the display. The DHW temperature values that can be set range from a minimum of 30°C to a maximum of 60°C.

7

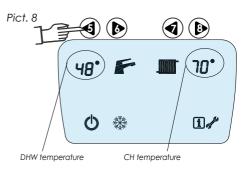
[i] A

Setting CH temperature

Press one of the two buttons upon the tap symbol (7-8). The numbers indicating the temperature flash, then press the 🕑 button (8) to increase the temperature of CH. Each time this button is pressed, an increase by 1°C is obtained. In order to decrease the CH temperature, press the 🕑 button (7). Each time this button is pressed, a decrease by 1°C is obtained.

Once the needed temperature value is set, do not press the (7-8) buttons anymore. The new CH temperature value will flash for 5 seconds, then it will be stored and displayed.

The CH temperature values depend on the type of installation.


For boilers used for high temperature systems, the temperature range is 50°C - 80°C, while for the ones used for low temperature systems, the temperature range is 27°C - 55°C.

Setting heating temperature

If the "Summer" mode is active (the sun symbol is displayed), the device for modifying the CH temperature is disabled.

Boilers for central heating only

Only the temperature value for the single option which can be viewed on the display can be adjusted in central heating only boilers. Setting the central heating temperature is performed as previously described.

THE USE OF TOO HIGH DHW TEMPERATURES CAUSES THE PREMATURE WEAR OF THE DHW HEAT EXCHANGER.

ASK YOUR AREA INSTALLER FOR INFORMATION ON THE TYPE OF SYSTEM CONNECTED AND **RESPECTIVE ADJUSTMENTS**

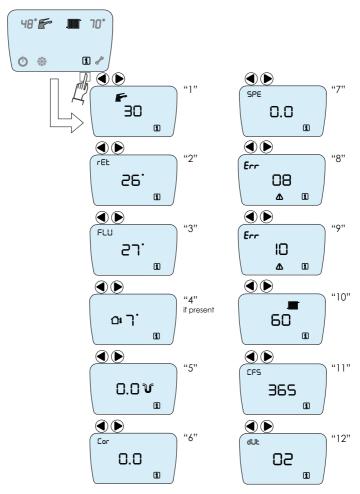
INFORMATION MENU

Accessing the INFORMATION MENU allows immediately displays the central heating allowing the state determining its operation to be known at any time. The displayed The exit from the menu pages can be parameters cannot be modified.

To access the menu pages, press BUTTON 4. The menu can be accessed both when the boiler is in stand-by and when it is operating. this will return to the menu page active

Selecting the menu pages

In order to visualize the values of all the INFORMATION MENU parameters, after activating the initial page which


various important parameters regarding the temperature, press the button (b) (6) to scroll boiler adjustments and status to be viewed, forward the pages and press the button 🕑 (5) to scroll backward the pages.

> automatic after 60 seconds of inactivity, or it can be activated by pressing any key; once you have chosen to end the display, when accessing the INFORMATION MENU.

* REQUEST INFORMATION ON CONNECTED DEVICES FROM AREA AUTHORISED INSTALLER

Pict. 9

	Information menu list
1	DHW temperature
2	Return sensor temperature
3	Flue gas probe temperature
4	External sensor temperature (if present)
5	CH circuit pressure
6	lonization current
7	Fan speed
8	Last fault code
9	Second to last fault code
10	CH temperature
11	Days to ordinary maintenance expiration
12	Circulator Feedback

OPERATION WITH ROOM THERMOSTAT

Operation with room thermostat In compliance with current leaislation on energy saving, it is MANDATORY to connect the appliance to a room thermostat for optimal regulation and maintenance of the room temperature

REQUEST INFORMATION ON INSTALLATION OF THE EXTERNAL SENSOR AND OPTIMAL REGULATION OF THE BOILER FROM YOUR AREA AUTHORISED INSTALLER.

OPERATION WITH OUTDOOR PROBE

The boiler can be connected to an OUTDOOR an adaptation of the same (compensated probe. In this mode, the boiler is able to adjust the temperature) is obtained according to the CH water temperature automatically, according selected climatic curve. to the temperature detected by the probe positioned appropriately outside the building. The regulation takes place automatically by obtaining the CH water temperatures from a special preloaded mathematical function; by modifying appropriate parameters, different "climatic curves" can be selected, making it possible to optimize the appliance for a specific climatic zone or seasonal period. However, it is possible to make a personalized adjustment of the CH water temperature; by increasing or decreasing the value of the CH temperature.

REQUEST INFORMATION ON INSTALLATION OF THE EXTERNAL SENSOR AND OPTIMAL REGULATION OF THE BOILER FROM YOUR AREA AUTHORISED INSTALLER.

OPERATION WITH CRONOTHERMOSTAT ECO CRONO OPEN-THERM

The "ECO CRONO" programmable maintenance modes). chronothermostat Open-Therm (O.T.)can be To connect ECO CRONO O.T. use the cable environments. The "ECO CRONO" allows thermostat). all main boiler functions to be managed Refer to the instructions for correct installation remotely, allowing it to be fully managed and use of the "ECO CRONO" thermostat. from a different room to that where the To activate the O.T. communication it is be used to schedule daily and weekly parameter P13. room temperatures and manage reduced demand periods (holidays, anti-frost and

used for optimal and even more economical labeled "TA" for which the appliance is management of temperatures in domestic already set up (the same set up for the room

boiler is installed. "ECO CRONO" can also necessary to select the corresponding

REQUEST INFORMATION ON INSTALLATION OF THE EXTERNAL SENSOR AND OPTIMAL REGULATION OF THE BOILER FROM YOUR AREA AUTHORISED INSTALLER.

SPECIAL FUNCTIONS

Heating system Anti-frost function (all models)

The anti-frost function is always active and prevents the heating system water from freezing.

If the heating circuit water temperature probe detects a too low water temperature, the circulating pump starts and the burner ignites at the minimum power.

The function remains active until the set temperature is reached, in order to prevent the heating system water from freezing.

· Instant DHW exchanger pre-heating

This function can be activated exclusively on models which are prepared and configured to instantly obtain domestic hot water; this function allows to keep the DHW exchanger at a temperature which is close to the set one. The activation of this function may improve the boiler's performance on the DHW request.

· Comfort zone

The boiler may be prepared in a way to heat several zones in different ways.

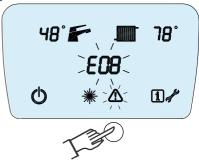
This, for instance, allows to easily divide a single housing unit into different comfort sectors

ALWAYS LEAVE THE BOILER POWERED ON AND THE SHUT-OFF VALVES OPEN, IF THE SYSTEM IS EXPECTED TO BE SUBJECT TO VERY COLD TEMPERATURES.

THIS FUNCTION DOES NOT GRANT TO PREVENT THE HEATING SYSTEM FROM FREEZING, SINCE IT DEPENDS ON THE BOILER CONTINUOUS ELECTRIC POWER AND GAS SUPPLY.

FOR INFORMATION ABOUT CONFIGURING THE BOILER TO PROTECT IT FROM FREEZING, ASK THE AUTHORIZED AREA INSTALLER.

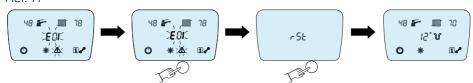
FOR INFORMATION ABOUT CONFIGURING THE DHW TEMPERATURE, ASK THE AUTHORIZED AREA INSTALLER.


ACTIVATING THIS FUCTION MAY CAUSE THE EARLY DETERIORATION OF THE DHW EXCHANGER AND A HIGHER GAS CONSUPTION.
FOR INFORMATION ABOUT THE CORRECT FUNCTION CONFIGURATION, ASK THE AUTHORIZED AREA INSTALLER.

FAULTS

All functions supported by the boiler are Pict. 10 managed by a microprocessor-based system which, aside from allowing the system to run perfectly in order to maintain the greatest level of comfort possible, constantly monitors the functional parameters, ensuring they fall within the necessary safety interval by a wide marain, and therefore that all devices present are functioning perfectly.

Whenever the malfunction of any component or conditions which could compromise safe operation of the system are detected, the microprocessor system places the device into a limited operation mode or even completely prevents it from operating. The microprocessor system is able to detect and issue warnings for the main fault conditions to allow the system to be brought back to normal conditions as soon as possible. Fault warnings are given on the LCD display. The malfunction is detected and an intermittent warning displayed immediately, consisting of a number preceded by the error symbol E and by the relevant fault symbol (Pict. 10). Faults are displayed on any screen of the main menu.


Conditions causing transitory faults are possible. Many of these are recognized and cause a temporary block which is automatically reset once the condition causing the fault has stopped. Some of these provide for the possibility to attempt to restore operation manually.

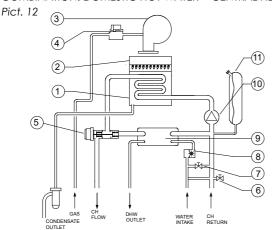
Manual error reset, recovery attempt

To manually reset the system following a fault condition, press the button 3: the RST symbol (reset) will be displayed on the LCD display. Press button 3 again (Pict. 11). The microprocessor will attempt to recover the system by resetting all the conditions presumed to have caused the fault. If the operation is successful the boiler will return to normal operation; if not, the error code causing the malfunction will be displayed again.

Pict. 11

IF A FAULT IS NOT SOLVED AFTER 2 MANUAL RESET ATTEMPTS THEN THE AUTHORISED TECHNICAL ASSISTANCE CENTRE MUST BE CALLED.

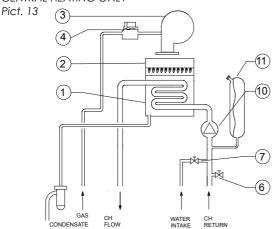
TAMPERING WITH ANY DEVICE MAY BE DANGEROUS AND ANNULS EVERY WARRANTY CONDITIONS.


FAULTS CODE TABLE

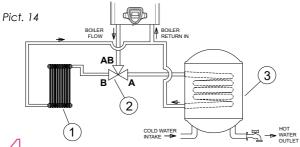
Codice	Causa possibile	Comportamento	Azioni possibili
E01	Ignition failed	Boiler locked	Check gas presence Check gas line pressure Check ignition/detection electrodes Check electronic cable Check igniter
E03	Heating system temperature sensor fault	Boiler locked	Replace DHW sensor
E04	Domestic hot water system temperature sensor fault	DHW supplied in provisional mode Heating functions	Replace CH sensor
E06	High temperature detected by heating system sensor	Device in stand-by Normal DHW supply	Wait for automatic unlocking Check pressure to CH system
E08	Central heating system pressure too low	Boiler locked	Check pressure to CH system
E09	Over-temperature safety probe intervention	Boiler locked	Perform reset maneuver Contact technical support
E10	Central heating system pressure too HIGH (> 2.7 bar)	Boiler locked	Check pump functioning
E11	Pressure transmitter failure	Boiler locked	Check integrity of connection Replace pressure trasmitter
E12	Remote control reset used-up	Boiler locked	Reset system Switch off power
E13	SYSTEM error	Boiler locked	Reset system Switch off power Replace electronic board
E17	Exhaust probe damaged or Exhaust overtemperature	Boiler locked	Reset the system or replace the probe
E23*	Fault on external temperature sensor	Resumption of operation without external sensor	Check position of external probe Check communication line Replace external sensor
E24	Return probe damaged	The boiler continues to operate with circulator always at maximum power	Replace the probe
E25	Central heating system temperature too low freezing risk	Boiler locked	If possible reset normal functioning conditions
E28*	Water cylinder / water heater probe failure	Boiler locked	Replace probe
E31	Faulty safety probe	Boiler locked	Replace the probe
E60	Circulator PWM error	Circulator always at maximum power	Check wiring Replace the circulator
E61	Temporary circulator failure	The circulator works in emergency mode	Wait for normal conditions to be restored or replace the circulator
E62	Circulator failure	Boiler locked	Replace circulator
E75	Failure communication between electronic board and display board	Boiler locked	Reset system Switch off power Replace electronic board
E88	Failure OPEN THERM COMMUNICATION	Boiler locked	Check connection between boiler and Open Therm
E99	Parameter configuration error	Boiler locked	Check and reconfigure the parameters

^{*}can be displayed only if the relative devices are installed

OPERATION DIAGRAM

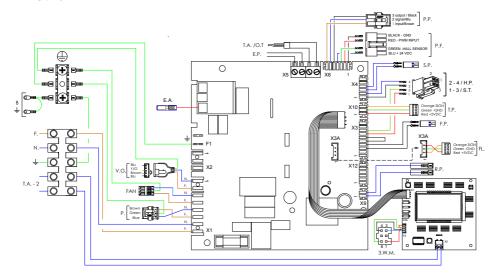

COMBINATION: DOMESTIC HOT WATER + CENTRAL HEATING

- 1) Primary heat exchanger
- 2) Burner
- 3) Fun
- 4) Gas valve
- 5) Three-way valve
- 6) Safety valve
- 7) Filling loop cock
- 8) Hot water priority turbine
- 9) Secondary heat exchanger
- 10) Circulator unit
- 11) Expansion tank


OPERATION DIAGRAM

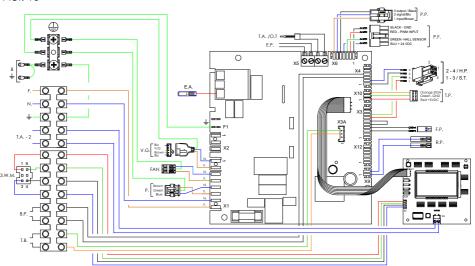
CENTRAL HEATING ONLY

- 1) Primary heat exchanger
- 2) Burner
- 3) Fun
- 4) Gas valve
- 5) -
- 6) Safety valve
- 7) Filling loop cock
- 8) -
- 9) -
- 10) Circulator unit
- 11) Expansion tank



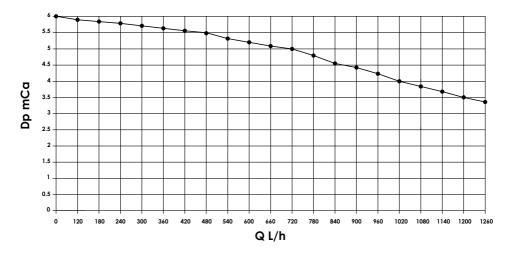
- 1) Central heating circuit
- 2) Three-way valve
- 3) Boiler

ELECTRICAL WIRING DIAGRAM


COMBINATION: DOMESTIC HOT WATER + CENTRAL HEATING

Pict. 15

ELECTRICAL WIRING DIAGRAM


CENTRAL HEATING ONLY Pict. 16

	List of connections TheA++ MR/MN CR/CN								
3.W.M.	3way Valve	FAN	Fan	N.	Neutral	S.P.	DHW Probe	T.B.	Storage Tank Thermostat
В.	Boiler Earth	FL.	Flow Switch	P.	Circulating Pump	S.T.	Safety Probe	V.G.	Gas Valve
E.A.	Ignition Electrode	F.P	Exhaust Probe	P.F.	Fan PWM	T.P.	Pressure Transmitter	B.P.	Water Heater Probe
E.P.	Outdoor Probe	H.P.	CH Probe	P.P.	Pump PWM	T.A./O.T	Room Thermostat/ Open Therm		
F.	Phase	M.V.G.	Gas Valve Modulator	R.P.	Return Probe	T.A 2	Zone 2 Room Thermostat		

GRAPHS FOR THE HEAD AVAILABLE TO THE SYSTEM

Pict. 17

INSTALLATION

Use:

to current technical standards and the most and authorised personnel. stringent safety rules. Despite this, improper • Do not install the boiler in environments use may endanger persons and property as containing dust or strong vapours. well as damaging the boiler itself.

atmospheric temperature.

to be considered improper. The manufacturer/ supplier declines any responsibility for damage or injury caused by improper use.

Use of the boiler according to its design also means respecting the instructions given in distances and spaces in Pict. 18 (also when the operation and maintenance manuals installing inside an enclosure). and observing the general inspection and • Mount the boiler on a solid wall. maintenance conditions.

General requirements

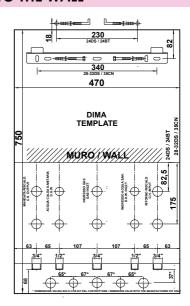
qualified and licensed personnel. They also or piping when drilling. assume responsibility for correct installation, adjustment and commissioning.

Adjustment, maintenance and repair of the The boiler has been constructed according boiler must only be performed by qualified

The presence of substances such as fluorine, This boiler has been designed as a thermal chlorine, sulphur etc. (e.g. vapours from generator for closed-loop central heating sprays, solvents or detergents, paints, systems and for the production of domestic adhesives or fuels) may cause the boiler's components or combustion gas evacuation This boiler is only for heating water to a system to corrode and become damaged. temperature below that of boiling point at Avoid installing the boiler directly in commercial/industrial premises (e.g. hair Any use different from those outlined herein is salons, painting/carpentry workshops, cleaning companies etc.).

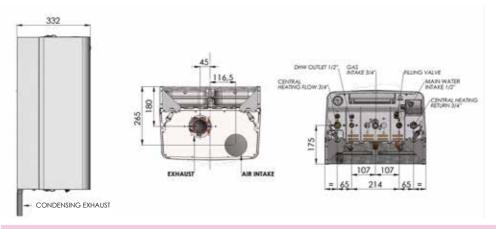
- The boiler must be installed in ventilated premises.
- Install the device respecting the minimum
- Ensure that there are no depressions which could cause the boiler to stand out from the wall
- Installation must only be performed by
 Ensure you do not drill into tracked cables

Pict. 18


FASTENING THE BOILER TO THE WALL

Attach the cardboard template giving the Pict. 19 connection and fastening schemes to the wall, paying attention to the boiler dimensions and necessary clearances. (Pict. 19)

- Use a suitable bit to drill the holes indicated by the two wall plug symbols on the template.
- Remove the template; insert the two wall plugs in the previously prepared holes, then hang the boiler, inserting the hooks of the plugs in the specific holes.



Fasten the template so that its axis coincides perfectly with that of the boiler.

LAYOUT OF CONNECTIONS

Pict. 20

PLUMBING THE BOILER IN

Connect the water and central heating pipes to the boiler, respecting the positions and distances indicated (Pict. 20); take particular care when connecting pipes to ensure they are not placed under pressure in order to minimise the danger of future leaks. Use appropriate tools and procedures for tightening.

Flush thoroughly before connecting the pipes to ensure that any impurities present in the piping and radiators are completely removed.

Connect the safety valve outlet so that its operation would not cause any damage to persons or property

- Use piping of not less than 1/2" diameter
- Ensure that the line is always at atmospheric pressure by using suitable traps (do not connect pipes directly to the valve outlet)
- Connect the safety valve outlet line to the household grey water drainage system
- Apply suitable protection to the drainage line – the water carried in it may be at high temperatures

 THE MANUFACTURER ASSUMES NO RESPONSIBILITY FOR DAMAGE CAUSED TO PERSONS OR PROPERTY DUE TO OPERATION OF THE SAFETY VALVE DO NOT USE THE PLUMBING PIPEWORK CONNECTIONS AS EARTH POINTS FOR ELECTRICAL EQUIPMENT.

WARNING!!!

PROTECT THE PRIMARY HEAT EXCHANGER BY THE USE OF THE CORROSION INHIBITOR FLUID EXCLUSIVELY SUPPLIED BY THE MANUFACTURER. OTHERWISE THE HEAT EXCHANGER WARRANTY SHALL DECAY.

- Idraterm p.100 In 1% sol. For high temperature systems
- Idraterm p.140 In 1% sol. For low temperature systems

CONNECTING FILLING TAP FOR CENTRAL HEATING ONLY BOILERS

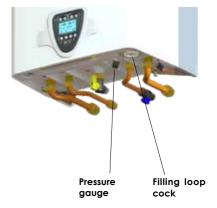
In order to fill the system, it is sufficient to connect the supplied ball valve to the 1/2" DHW intake and connect this to a water pipe.

Pict. 21

Filling ball valve

FILLING THE SYSTEM

When all of the boiler connections have been plumbed in, it is possible to proceed to fill the central heating circuit. Perform the operation slowly to help all air bleed out of the system. When filling, check all the internal and external parts of the system to make sure they are perfectly tight.


- Open the bleed valves on the radiators.
- Gradually open the filling loop cock Pict. 22, ensuring that any automatic air bleed valves installed on the system are working correctly.
- Close the radiator bleed valves as soon as water starts to come out.
- Check on the boiler pressure gauge that a pressure of between 1.3 and 1.6 bar has been reached.
- Close the filling loop.

Perform the filling and topping up of the system with the boiler completely off and all parts at ambient temperature.

Always close the filling loop cock once you have finished the operation.

Pict. 22

CONNECTING THE CONDENSATE LINE

The TheA++ boiler is already fitted with a to ensure that any formation of ice in the installed in.

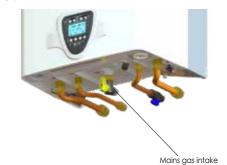
The boiler's connection to the condensate system. line must be inspectable and must drain into the household waste-water drainage system The installer shall be responsible for installing with a minimum fall specified by applicable a condensate neutralisation system if regulations. There must be no points where **necessary**. standing water can form and no narrowing which could impede the flow.

An open type connection must be used

condensate trap to avoid the combustion drainage system does not impede the products entering the environment it is condensate flow. Pict. 23 shows how to connect the trap to the household drainage

The installer shall be responsible for installing a condensate neutralisation system if necessary.

A check and possible cleaning of the siphon and the condensation drainage system is recommended at least once a year.



CONNECTION THE MAINS GAS SUPPLY

Before connecting the boiler to the mains gas, check that it is designed to function with the *Pict*. 24 available type of gas. Thoroughly flush all the gas pipes to remove any residues which could compromise correct operation of the boiler.

The gas supply must be connected to the boiler intake (Pict. 24), following all applicable regulations. Rigid metal piping or continuous-wall stainless-steel hose must be used and a shut-off valve must be connected before the boiler.

Check that the flow rate from the line from the gas meter is sufficient to support the simultaneous use of all equipment connected to it. Check that there is no significant drop in pressure along the distribution line from the gas meter; pipes of sufficient diameter must therefore be used to satisfy this requirement.

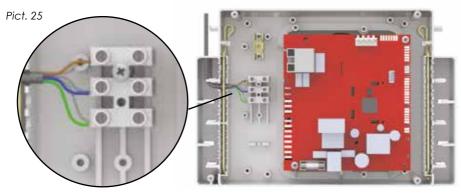
Check that all devices necessary for creating and limiting the maximum permissible pressure of the relative gas are installed in the system before opening the boiler's gas connection.

Do not use the gas supply pipework connections as earth points for electrical equipment.

Always install a gas shut-off valve before the device. This must have a YELLOW valve handle and must be placed in a position which allows full access to it.

20

CONNECTION TO THE MAINS ELECTRICAL SYSTEM


The safety of the appliance is also achieved when it is correctly connected to an electrical distribution system carried out in accordance with current regulations; and in particular when it is connected to an effective earthing system.

The appliance is equipped with a pre-wired three-pole cable for unplugged connection to the power line. The connection to the mains must be made with a fixed connection and equipped with a bipolar switch whose contacts have an opening of at least 3 mm. It is important to respect the polarity (LINE: brown cable / NEUTRAL: blue cable / EARTH: yellow-green cable) in the connections to the power line. When installing or replacing the power cable, the earth conductor must be left 2 cm longer than the others. In case it is necessary to completely replace the prewired power cable, it is necessary to access the electronic board compartment:

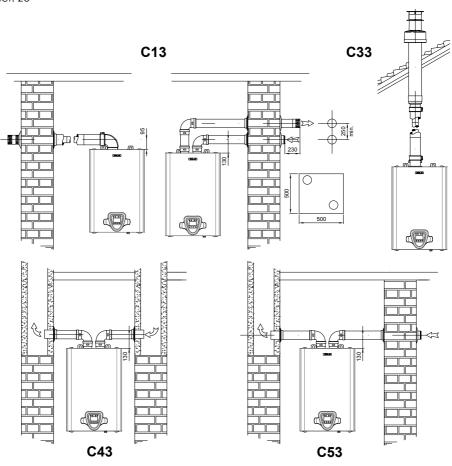
 disconnect the appliance's power supply using the upstream switch.

- remove the lower cover by unscrewing the four locking screws and turn the instrument panel to the open position.
- remove the rear cover of the box by unscrewing the 4 fixing screws.
- locate the terminal board on the side of the electronic board (Pict. 25) and disconnect the line, neutral and ground poles of the pre-wired cable; remove the cable.
- wire the respective poles of the new conductor respecting the positions.
- close the rear cover, locking it with the relevant screws.
- return the panel to its working position and reposition the lower protection.

For connecting or replacing conductors, use H05VV -F, H05VVH2-F CEI EN 60228 or better rated cable.

A qualified electrician should check the suitability of the protective earth system. The manufacturer is not responsible for any damage caused by the lack of a suitable system earth. Check that the electrical connection is sufficient to satisfy the boiler's maximum power consumption, indicated on the boiler plate.

Extensions, adaptors or gang sockets must not be used when connecting the device to the mains electrical system.


COMBUSTION GAS EVACUATION SYSTEM: COMPATIBLE APPLICATIONS

The boiler is a type Croom-sealed fan-assisted • C43 combustion gas evacuation and air connected to a combustion gas evacuation/ are exposed to similar wind conditions. air intake system. The types of permissible air • C53 separate horizontal or vertical flues, systems are listed on the technical data plate pressures. and summarised below:

- be split, but the outlets must be exposed to separately. similar wind conditions.
- C33 concentric vertical flue (with the same specifications as type C13).

Pict. 26

- device; the air intake and flue must be intake in separate common flues, but which
- intake and combustion gas evacuation (flue) in any case in areas exposed to different
- C63 combustion gas evacuation and air • C13 concentric wall flue. The pipes may also intake performed with pipes sold and certified

COMBUSTION GAS EVACUATION SYSTEM: INSTALLATION

The boiler, based on its UNI 7129 classification, sections of various lengths, connections to can be connected to COAXIAL and SPLIT the boiler and outside terminals as well as all intake and flue evacuation systems.

The "coaxial" system is composed of a single components with their relative characteristics: pipe containing both the flue and intake pipes on the same axis. The system provides for all components necessary for completing the line, including changes of direction, straight

necessary seals. Below is a list of compatible

COAXIAL SYSTEM 60/100 mm diameter

No.	Description	Pressure drop (Pa)	Equivalent length m
1	Terminal L.990	25	2.8
2	Extension L.1000 M-F	6	1
3	Vertical flanged coupling M	15	2.2
4	90° bend M-F	7	1.3
5	Bend 45°	6	1
6	Neoprene gasket ø 128		
7	Intake gasket ø 100		
8	Flue evacuation gasket ø 60		

Pict. 28

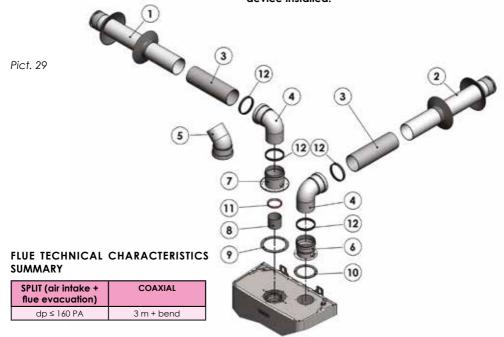
The large pressure drops which characterise this system limit its length. The maximum possible length therefore depends on the components used to create the line and can be determined by adding the "Equivalent lengths" for each individual component used (excluding the initial 90° elbow) listed in the "COAXIAL SYSTEM" table.

IT IS ESSENTIAL NOT TO EXCEED THE MAXIMUM PERMISSIBLE LENGTH!

Consult the maximum length values listed in the "FLUE TECHNICAL CHARACTERISTICS SUMMARY" on page 23 for COAXIAL systems relative to the type of device installed.

the sealed chamber. The system provides for characteristics: all components necessary for completing the line, including changes of direction, straight

The "split" flue system is composed of sections of various lengths, connections to one pipe for combustion gas evacuation the boiler and outside terminals as well as all connected to the fan outlet and one for the necessary seals, for both pipes. Below is a list air intake connected to the hole on the roof of of compatible components with their relative


SPLIT SYSTEM 80 mm diameter:

No.	Description	Pressure drop (Pa)	Equivalent lenght mt
1	Intake terminal L.950	15	0.8
2	Flue evacuation terminal L.990	3.5	1.5
3	Extension M-F L.1000	3	1
4	90° bend M-F	14	3
5	45° bend M-F	7	1.3
6	Intake adaptor Ø 80		
7	Flue evacuation adaptor Ø 80		
8	L50 Ø 60 flue evacuation connection		
9	Neoprene gasket ø 128		
10	Neoprene gasket ø 100		
11	Collar gasket Ø 60		
12	Gasket Ø 80		

The maximum possible length therefore IT IS ESSENTIAL NOT TO EXCEED THE MAXIMUM create the line and can be determined by (air intake + flue evacuation)! adding the "Equivalent lengths" for each Consult the maximum PRESSURE DROP table.

depends on the components used to PERMISSIBLE PRESSURE DROP FOR THE DUCTS

individual component for both the intake and values listed in the "FLUE TECHNICAL evacuation lines listed in the "SPLIT SYSTEM" CHARACTERISTICS SUMMARY" for SPLIT systems relative to the power and type of device installed.

AIR INTAKE AND COMBUSTION GAS EVACUATION SYSTEM: IMPORTANT INFORMATION

FOLLOW APPLICABLE LEGISLATION AND REGULATIONS TO THE LETTER.

INSTALL AIR INTAKE AND FLUE EVACUATION SYSTEMS CONFORMING TO THE SPECIFICATIONS GIVEN ON THE TECHNICAL DATA PLATE AND OBSERVE ANY LIMITATIONS ARISING FROM APPLICABLE LEGISLATION AND REGULATIONS TO THE LETTER.

ONLY USE APPROVED COMPONENTS FOR AIR INTAKE AND COMBUSTION GAS EVACUATION SYSTEMS WHICH ARE OF THE CORRECT DIMENSIONS AND PURPOSELY DESIGNED AND MANUFACTURED FOR THE PURPOSE.

FOLLOW INSTALLATION INSTRUCTIONS TO THE LETTER.

INSULATE ANY FLUE SECTIONS WHICH WILL BE EXPOSED TO LOW TEMPERATURES.

WHENEVER NECESSARY, PLACE APPROPRIATE CONDENSATE TRAPS ON THE FLUE EVACUATION LINE:

Ensure the following before commissioning the boiler:

- THAT THE FLUE EVACUATION AND AIR INTAKE LINES ARE PERFECTLY SEALED.
- THAT THEY ARE CORRECTLY POSITIONED AND FASTENED.
- THAT THERE ARE NO MECHANICAL, THERMAL OR CHEMICAL STRESSES ON THE LINES WHICH COULD EVEN MOMENTARILY COMPROMISE THEIR INTEGRITY.

INSTALL SYSTEMS TO ABSORB ANY THERMAL EXPANSION WHEN THE SECTIONS OF FLUE DUCTING ARE LONGER THAN THE MINIMUM SPECIFIED LENGTHS.

75

ADJUSTMENT AND MAINTENANCE

PERFORMED BY QUALIFIED PERSONNEL.

in full compliance with all applicable in order to keep it in optimum operating legislation and regulations. The boiler should condition.

All maintenance operations MUST BE be inspected by a qualified technician at the end of every heating season (winter) These operations must also be performed and whenever else it is considered necessary

PRELIMINARY MAINTENANCE OPERATIONS

- Declaration of conformity check.
- Check the log book.
- Check that the INSTRUCTION MANUAL is present. properly evacuated.
- Visual check of the installation (in conformity) with applicable regulations).
- Visual check of the flue system.
- Check that combustion gases are being

GENERAL MAINTENANCE OPERATIONS

- fins.
- Remove any oxidation on the burner.
- functions correctly.
- and unions.
- Check that the safety devices are Check hydraulic system static pressure. operational.
- Clean any deposits on the heat-exchanger
 Check that the boiler's control and regulation devices are functioning correctly.
- Check that the combustion gas evacuation Check that the boiler ignites, turns off and device and/or duct is in good condition and operating correctly.
- Visual check for leaks in gas and water pipes
 Perform a visual check that the safety valve outlet is not blocked.

If any components of the boiler require replacement, original spare parts supplied by the manufacturer must be used. Use of other components could compromise correct operation of the device. The manufacturer declines any responsibility for consequences linked to the use of non-original spare parts.

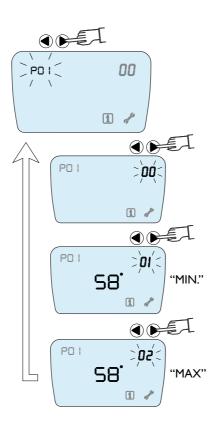
At the end of the maintenance procedure a report must be prepared and left with the owner. This must contain the findings of the inspection, any work performed and any recommendations.

SERVICE FUNCTION

during maintenance and adjustment the corresponding chapter (page 32). operations, independently of the room Enter the "PARAMETER MENU" and select thermostat signals.

chapter have been satisfied.

This function allows the boiler to be run at relative modes from the dedicated page. In minimum and maximum power conditions order to access the INSTALLER MENU, refer to


page "P6" by using the buttons 6. Press one The boiler installation must be completed of the two buttons upon the digits displayed before activating the "SERVICE" function. next to the relevant page. The value will **Before activating this function check that all** begin to flash. Press button 8 to increase the conditions specified in the "Commissioning" displayed value and button 7 to decrease it.

Activating the function:

To activate the function it is necessary to access the installer MENU and activate the

P01 00 = deactivated 01 = minimum power 02 = maximum power

IF ANY COMPONENTS OF THE BOILER REQUIRE REPLACEMENT, ORIGINAL SPARE PARTS SUPPLIED BY THE MANUFACTURER MUST BE USED. USE OF OTHER COMPONENTS COULD COMPROMISE CORRECT OPERATION OF THE DEVICE. THE MANUFACTURER DECLINES ANY RESPONSIBILITY FOR CONSEQUENCES LINKED TO THE USE OF NON-ORIGINAL SPARE PARTS.

AT THE END OF THE MAINTENANCE PROCEDURE A REPORT MUST BE PREPARED AND LEFT WITH THE OWNER. THIS MUST CONTAIN THE FINDINGS OF THE INSPECTION. ANY WORK PERFORMED AND ANY RECOMMENDATIONS.

terminals.

All safety measures are active when in SERVICE mode, in particular those for the control of the maximum temperature in the central heating circuit via the flow temperature sensor; on reaching 80°C the function is suspended.

If the function remains activated for long The function is exited automatically after 20 periods of time an increase in pressure may minutes of permanence, or by assigning the occur in correspondence with the system's value "00" to parameter P1, which returns the device to normal functions.

DATA PLATE

Pict. 31 - DATA PLATE

Serial number B Code: C Country of destination: D	O CE.: Grype: H Date: I PIN Code: J Nox class: K		A= Type of boiler B= Boiler model C= Serial Number D= Code E= Country of destination F= Manufacturer G= Category H= Approved types of exhaust exchange configuration I= Date of production
Flow	Pressure	Pressure min/max	J= P.I.N. product identification number
Natural gas G20 L/a (m3/h)	L/b (mbar)	L/c (mbar)	K= NOx Class
G31 L/a (kg/h)	L/b (mbar)	L/c (mbar)	L= Set by gas type L/a= Load
C.H. Circuit			L/b= Supply nominal pressure
1			L/c= Pressure min/max
,			M= Thermal load min
,			M/a= Thermal load max
			N= Useful load min
Thermal power M (kW min.)	M/a (kW max)		N/a= Useful load max O= Useful load in condensing
Useful load N (kW min.)	N/a (kW max)		P= C.H. work pressure
Useful load in condensing Pressure P (bar) v	O (kW max) Nork temperature: Q(C°)		Q= C.H. work temperature
Pressure P (bar) v	work temperature: Q(C)		R= D.H.W thermal load if different from M min.
			R/a= D.H.W thermal load if different from M/a max
D.H.W. Circuit	D/a /k/M max)		S= A.C.S. specific flow rate according to EN625-EN13203-1
	R/a (kW max)		T= D.H.W work pressure U= D.H.W work temperature
Specific flow Δt25: S (I/min.) Work Pressure: T (bar)	Work Temperature: U(C°)		W= IP protection rate
Work Pressure: I (Dar) v	work remperature: O(O)		X= Gas consumption
1			Y= Operating temperature
	Electric power: X(W) Power supply: Z		Z= Power supply

POWER ADJUSTMENT

panel.

It is in any case ALWAYS necessary to check the dangerous to the health of people and animals. following before running the device: Commissioning

- That the device has been correctly located and installed in a location satisfying all the manufacturer's requirements as well as any applicable legislation and regulations.
- That the boiler is correctly plumbed in.
- That the central heating circuit is filled with water at a suitable pressure.
- That the central heating circuit and all the boiler's hydraulic connections are perfectly tight.
- That the boiler is connected to the mains electrical supply according to the electrical code and any other applicable regulations.
- That the boiler is connected to the combustion exhaust system in accordance with all applicable legislation and regulations and that the manufacturer's

When supplied, the boiler is already set up to specifications and compatible methods listed on the function optimally with a specific type of gas, technical data plate (Pict. 31) are respected. Also which can be identified by consulting the technical check the presence, if necessary, of appropriate data plate present on the rear of the instrument diaphragms (page 26). Failure to carry out these checks may make the boiler's operation extremely

- That the gas supplied by the mains network connected to the boiler corresponds to that indicated on the data plate and for which the boiler is set up. Running the boiler on gas which is incompatible with the specifications on the boiler data plate can prove extremely dangerous to people and property as well as causing irreparable damage to the device itself.
- That the entire gas distribution line both inside and outside the building, as well as inside the boiler, where applicable, is tested for tightness.
- That the gas line meets all applicable legislation and regulations, in particular: That a gas shut-off valve is installed immediately before the boiler. This must have a YELLOW maneuver handwheel in a visible position without any obstacle that might compromise even partially the maneuver.

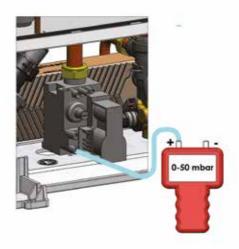
TESTING THE GAS SUPPLY DYNAMIC PRESSURE:

- Remove the iron cover by loosening the 4 fastening clips.
- Free up access to the gas valve by rotating the instrument panel to the open position (Pict. 31).
- Loosen the screw holding the pressure outlet upstream of the regulator and connect it with silicone tubing to the + input of a differential manometer with an appropriate range (at least 0 50 mbar), leaving the second input free if present (Pict. 33).
- Turn on the gas supply by opening the shut-off valve located on the meter and open the gas cock before the boiler.
- Use the SERVICE function to bring the boiler to maximum power.
- Measure the gas pressure before the regulator (dynamic mains supply pressure).
- Check that the value measured with the manometer falls within the max-min interval given in the "Dynamic mains supply pressure" table for the specific type of gas.

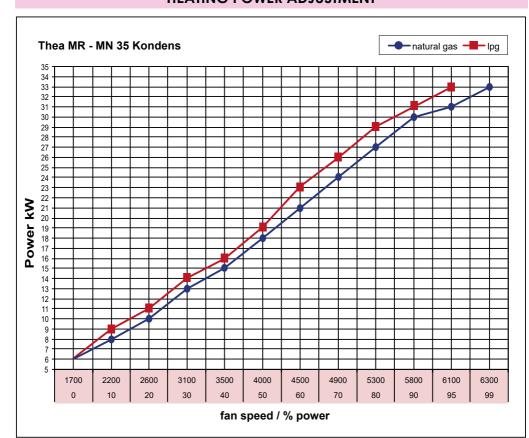
Pict. 32

Whenever dynamic pressures below the specified minimum levels should be found:

- Check that there are no kinks, blocks or other impediments to the normal gas flow in the gas supply line to the boiler.
- Check that the diameter of piping used for the gas supply line is sufficient and constant along the whole length.
- Check that there are no elements in the supply line which could lead to excessive pressure drops, e.g. too many bends, changes of direction, excessively long or countersloping sections etc.
- Consult the gas company on the specified minimum supply pressure values.



Whenever dynamic pressures above the specified maximum values should be found:

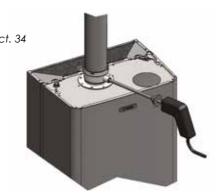

- Install a suitable pressure reducer/ regulator on the gas supply line before the boiler.
- Adjust the dynamic pressure of the gas via the regulator, if already present.

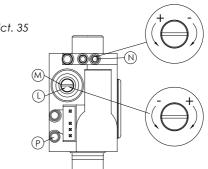
DYNAMIC PRESSURE mbar (MAINS)				
G: (NATUR	20 AL GAS)	G31 (PROPANE)		
min	max	min	max	
17	25	25	37	

HEATING POWER ADJUSTMENT

ANALYSIS - CHECKING AND REGULATING COMBUSTION

to check that the type of gas supplied in the mains regulation. and the supply pressure are correct. If this should not be the case, follow the procedures described in this section.


The boiler comes already calibrated and tested for It may be necessary to repeat the maximum and the requested type of gas, however it is advisable minimum adjustment twice to obtain correct


MAXIMUM POWER:

- Use the SERVICE function to bring the boiler to maximum power.
- Insert the combustion analyser probe in the Pict. 34 inspection outlet provided in the flue (Pict. 33). After the boiler has been running for 2-3 minutes, run the analysis and check that the CO₂ measured by the analyser corresponds to the value indicated in the table for maximum
- If the CO2 does not correspond, regulate with screw "N" (Pict. 34) of the ratio adjuster until the specified CO₂ value is obtained. Turn clockwise to decrease the CO₂ value, anticlockwise to increase it.

- Use the SERVICE function to bring the boiler to minimum power.
- Wait a few seconds for the ignition phase to complete and the boiler to bring itself to Pict. 35 minimum power.
- After the boiler has been running for 2-3 minutes, run the analysis and check that the CO₂ measured by the analyser corresponds to the value indicated in the table for maximum power.
- if the CO2 value does not correspond, regulate with screw "M" (Pict. 35) of the ratio adjuster after removing the protective cover "L" until the specified CO2 value is obtained. Turn clockwise to increase the CO₂ value, anticlockwise to decrease it.

CO2 VALUES TABLE		NATURAL GAS G20	LPG G31
	UdM	35 KW	35 KW
CO2 max power	%	9,2 + 0,1 - 0	10,3 + 0,1 - 0
CO2 min power	%	9 + 0,1- 0	10 + 0,1 -0
Minimum mains pressure	mbar	17	29
Maximum mains pressure	mbar	25	37

WARNING!

After finishing the gas supply pressure tests:

- Disable the SERVICE function.
 - Place the device in stand-by (off).
 - Disconnect the micromanometer connected before the gas regulator. TIGHTEN THE PRESSURE OUTLET SCREW UNTIL IT SEALS.
 - Press the gas valve regulation screws cover closed.
 - Return the instrument panel to its operating position, fastening if necessary.
 - Refit the lower cover, fastening it with the screws.

CHANGING GAS TYPE

When necessary, it is possible to modify / propane) and vice versa.

the boiler to run on types of gas which are In order to perform this change the boiler's up for in the factory.

This modification concerns in particular the change from NG (natural gas) to LPG (butane

supported but which the boiler was not set basic configuration must be modified to that necessary to support the supplied type of gas.

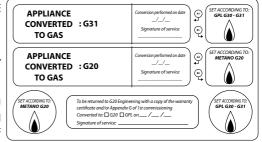
CONVERSIONS MUST ALWAYS BE PERFORMED BY QUALIFIED PERSONNEL

Proceed as follows to change the system:

CHANGING FROM NATURAL GAS (NG) TO LPG

- CONFIGURING THE SOFTWARE
- REGULATING COMBUSTION
- APPLY LABEL B1 ON THE GAS VALVE AFTER REMOVING THE OLD LABEL

CHANGING FROM LPG TO NG


- CONFIGURING THE SOFTWARE
- REGULATING COMBUSTION
- APPLY LABEL B2 ON THE GAS VALVE AFTER REMOVING THE OLD LABEL

CONFIGURING THE SOFTWARE FOR FUEL ADAPTATION:

To adapt the aas regulation valve driver:

- ACCESS THE CONFIGURATION MENU (ACCESS OR MODIFICATION MODE ON PAGE 35) AND DISPLAY THE VALUE OF PARAMETER A01;
- MODIFY THE PARAMETER ACCORDING TO THE GAS DISTRIBUTED AND FOR WHICH THE TRANSFORMATION HAS BEEN MADE.

No.	Gas type	Parameter
A O 1	Natural gas	0
A01	LPG	1
A13	Natural gas	14
A14	LPG	22

USING THE VALUES SHOWN IN THE TABLE: -ADJUST THE VALUES OF PARAMETER A13 / A14 as per chart B.

BEFORE COMMISSIONING THE NEWLY CONFIGURED BOILER IT IS NECESSARY TO CHECK THE GAS SUPPLY PRESSURE BEFORE THE BOILER AND MEASURE AND ADJUST THE GAS PRESSURE AT THE BURNER. REFER TO THE PRESSURE VALUES AND PROCEDURES GIVEN FOR EACH SPECIFIC GAS IN THE "TESTING THE GAS SUPPLY DYNAMIC PRESSURE:" CHAPTER (Page 28).

Complete the change by attaching the label A1/A2 indicating the change to the new type of gas for which the boiler has now been configured, near the technical data plate located on the rear instrument panel cover.

COMBUSTION ADJUSTMENT:

combustion regulation". If necessary, check Adjust the combustion as described on and adjust the ignition speed by modifying page XXX, chapter "Analysis-verification of the parameter "A15" for LPG or "A16" for CNG.

ACCESSING THE CONFIGURATION MENU

la configurazione completa dell'apparecchio parte dei dispositivi, permette la modifica dei accedendo alle pagine del MENÙ parametri di configurazione influenzando CONFIGURAZIONE. L'accesso al "MENÙ consequentemente ed in maniera sostanziale CONFIGURAZIONE" oltre a riportare a display il funzionamento dell'apparecchio.

È possibile visualizzare informazioni o effettuare informazioni di presenza e stato della magaior

ACCESS TO THE "CONFIGURATION MENU" IS EXCLUSIVELY RESERVED FOR TECHNICIANS WITH THE NECESSARY QUALIFICATIONS AND LICENSES ARBITRARY **MODIFICATION OF**

ANY PARAMETER CAN CAUSE MALFUNCTIONING OF AND DAMAGE TO THE BOILER. AS WELL AS CREATING A DANGEROUS SITUATION FOR PERSONS AND PROPERTY.

Accessing the Menu pages:

number "00" will appear on the left of the entering the installer password. display and the relative value on the right Accessing the installer menu via password (Pict. 36).

Selecting a page within the Menu:

pages corresponding to a code that uniquely identifies a parameter and the corresponding value. To select a menu page, scroll through the pages using buttons "5" and "6".

configuration of the device can be performed modify all parameters has now been obtained. by accessing the pages of the CONFIGURATION Select the parameter using buttons "5" and "6"; MENU. In addition to displaying information modify the values using buttons "7" and "8": on the presence and status of most devices, button "8" to increase and / or "7" to decrease. accessing the CONFIGURATION MENU allows the To store the value, press button "6". modification of the configuration parameters, To exit without saving, reset the desired value, consequently and substantially influencing the press button "6" to return to page modification operation of the device.

Changing the parameters value:

Keep button "4" pressed for more than 5 The modification of the value of a certain seconds; on release the letter "P" and the parameter can be carried out only after

(Pict.38):

Access the configuration menu by pressing button "4" for more than 5 seconds; when The information into the menus are organized by released, the wording "P00" will appear. By pressing button "5" the words "Cod" will appear and then "---"; enter the first value by pressing buttons "7" - "8"; confirm by pressing button "6": now enter the second and third value in sequence. Once the code "198" has been fully **Information can be viewed or the complete** entered, confirm using button "6". Access to

> and press button "8" or wait for automatically return to the main menu.

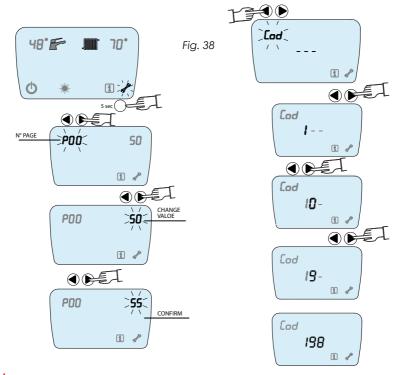



Fig. 37

THE DESCRIPTIONS AND VALUES GIVEN IN THE TABLE BELOW ARE ONLY TO BE USED WHEN IT IS NECESSARY TO CHECK THE CONFIGURATION.

MODIFICATION OF THE PARAMETERS CAN CAUSE THE BOILER TO MALFUNCTION AND BE DAMAGED OR DESTROYED.

CONFIGURATION MENU

Pagina	Descrizione	Min	Max	Default
P0	ALL PARAMETER MODIFICATION ENABLE CODE	0-99		198
		INSTAL.		
P1	SERVICE FUNCTION	0 = deactivated 1 = minimum power 2 = maximum power		0
P2	RESET SERVICE	1 = boiler power day	//hour timer reset	
P3	Deaeration program	0 = deactivated	1= activated	1
P4	Ramp CH (minutes)	0	10	1
P5	Anti frequent ignition parameter min	0	255	3
P6	Plate heat exchanger preheating	0 = deactivated	1 = activated	0
P7	DHW preheating offset (minutes)	0	10	3
P8	Minimum water flow	0 = deactivated	1= activated	1
P9	Delay time for activation of DHW request (seconds)	0	10	0
P10	Anti-water hammer function in diverter valve switching	0 = deactivated	1= activated	1
P11	Activation external probe	0 = deactivated	1= activated	0
P12	"K"climate curve parameter	10	30	10
P13	Selection T.A. or O.T.	0 = T.A.	1 = O.T.	0
P14	Anti-legionella function activation	0 = deactivated	1= activated	1
P15	Loading / unloading function	0 = deactivated	1= activated	1

Pagina	Descrizione	Min	Max	Default
A00	Boiler type setting	0 = combination with plate heat exchanger 1= combination with DHW storage tank 2= central heating only		0 MR/CR 1 MN/CN
A01	Gas type setting	0 Natural gas	1 LPG	0
A11	Modulating circulating pump	0 = deactivated	1= activated	1
A12	System type	1 = High temperature	2 = Low temperature	1
A13	Burner ignition power % with NATURAL GAS supply	0	99	14
A14	Burner ignition power % with LPG supply	0	99	22
A15	Burner maximum power % with LPG	0	99	99
A16	Burner maximum power % with natural gas supply	0	99	99
A17	"Post circulation" time sec in CH	0	99	60
A18	Post circ. time in DHW sec.	0	99	60
A19	"Post ventilation" time sec	0	99	10

Pag	Descrizione	Min	Max	Default
A20	"Post ventilation" time sec in DHW	0	99	10
A21	Δ burner ignition in CH mode ° C	-10	+10 -5	
A22	Δ burner shutdown in CH mode ° C	-10	+10	+5
A23	Δ burner ignition in DHW mode ° C	-10	+10	0
A24	Δ burner shutdown in DHW mode ° C	-10	+10	+4
A25	ΔT prim in DHW emergency ° C	0	+30	10
A26	Water tank temperature detection	0 = ntc probe	1 = thermostat	0
A27	Water tank preparing temperature ° C	+50	+80	80
A28	Δ water tank ignition preparing temperature ° C	-10	10 +10	
A29	Δ water tank shutdown preparing temperature ° C	-10	+10	0
A30	System maximum pressure (bar)	20	40	25
A31	System minimum pressure (bar)	5	11	5
A32	Δt CH modulating circulator ° C	5	35	20
A33	Circulator minimum PWM in CH mode % RPM	20	60	50
A34	Circulator maximum PWM in CH mode % RPM	65	100	100
A35	Feedback on circulator PWM	0 (deactivated)	1 (activated)	0
A36	Anti-legionella days frequency	1	30	7
A37	Anti-legionella temperature ° C	60	85	60
A38	Anti-legionella temperature holding time (minutes)	5	30	15
A39	230V diverter valve setting	0 = enabled zone 2° htermostat	1 = enabled in DHW	0

Some parameters may not be visible, depending on the type of boiler configuration.

INSTALLATION

It is recommended, and in many cases mandatory, to connect the boiler to a device which monitors and regulates the temperature in the areas served by the boiler itself. The purpose of this device is to create the maximum comfort and maximum energy savings possible.

"AREA 1"

The main heating area can be managed both by a thermostat, and by a remote control electronic device (Open-Therm). The appliance is supplied with TA Thermostatic Control configuration; in order to activate the Open-Therm control, it is necessary to modify the state of parameter "P13" from "0" into "1" (see chapter concerning "ACCESSING PARAMETERS").

For the correct installation of Room Thermostat or Open-Therm, refer to the instructions supplied by the thermostat manufacturer.

To connect the Room Thermostat or Open-Therm to the boiler it is possible to use the supplied two-core cable labelled "TA".

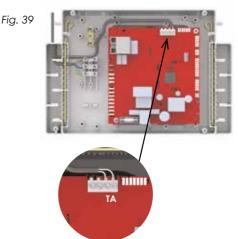
The connection to the boiler PBC is the same both for the Thermostat control and for the Open-Therm (see wire scheme at page 15, Connection x6).

"AREA 2"

A second heating area can be directly managed. The PCB installed on the boiler has got a second active door where the relevant room thermostat can be connected to (Pict.37).

The thermostat activates the circulating pump and allows the burner ignition. The water temperature is the same as the one set on the display and cannot be different in the two areas.

The second area only supports not powered thermostat control devices.


Although one water temperature only is available for both areas, their respective activation/deactivation is independent.

It is possible to combine to the "calls" of the main area a 230Vac control device that can commute any zone valves located on the main circuit so that, in a simple and inexpensive way, the two areas are

prevented from interacting with each other.

Whenever necessary, replace the "TA" cable and connect it directly to the slot present in the PCB case as follows:

- Power the boiler off
- Remove the boiler iron cover by unscrewing the 4 fastening clips
- Rotate the instrument panel in "Open" position
- Remove the rear instrument panel cover by unscrewing the 4 screws
- Identify the two-pole terminal board located on the left-hand side of the PCB. Disconnect any cable which may be present by loosening the terminal screws and remove it completely Connect the wires from the thermostat cable to their respective slots (Pict. 39)
- Run the cable and hold it in position with the cable grip at the edge of the case -Position the cable, running it under the cable gripping tabs on the side of the case
- Close the case cover with the 4 screws, paying attention that all the cables running out of the case are correctly positioned
- Return the electrical panel to the operational position (with the visible display)

COMPLETELY DISCONNECT THE DEVICE FROM THE ELECTRICITY SUPPLY BEFORE PERFORMING ANY OPERATION. USE THERMOSTATS COMPATIBLE WITH THE BOILER.

INSTALLATION OF OUTDOOR TEMPERATURE SENSOR

Type and positioning:

protective cover.

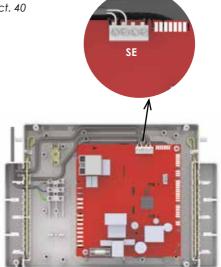
Position the sensor outside the area to be into direct contact with ice formations, heated facing NORTH/NORTH WEST, or in either. Where possible, install the sensor in an any case in a position with minimal exposure area protected (e.g. under roof overhang) to direct sunlight and air currents (corridors, or partially protected from bad weather, crawl spaces etc.). Fasten the sensor to ensuring it is at least 3 - 4 m from the ground. a wooden or masonry structure which is The pre-wired sensor can be installed for all thermally insulating, avoiding fixing it directly boilers. in contact with metal structures and surfaces

(auttering, arches, frames etc.). Avoid the Use an NTC 10K ß 3977 pre-wired sensor with sensor being even partially immersed in water, ideally ensuring it does not come

DO NOT USE SENSORS DIFFERENT FROM THOSE SPECIFIED, AS THIS COULD RESULT IN MALFUNCTIONING OF, DAMAGE TO AND EVEN DESTRUCTION OF THE BOILER.

Wiring:

Connect the sensor with insulated, dual-core 40 - 50 m cable with sheath of 5 - 6 mm diameter and Wire the cable from the sensor to the correct


mm; the maximum recommended length is

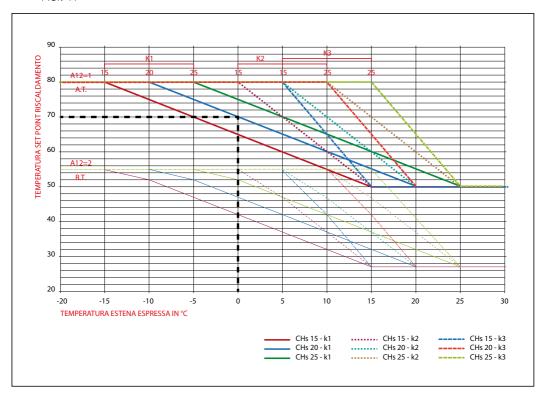
conductor diameter of between 1 and 1.5 slot (x5) in the terminal block inside the PCB panel.

COMPLETELY CUT THE POWER SUPPLY TO THE BOILER BY TURNING IT OFF AT ITS **DEDICATED SWITCH**

- Remove the iron cover by loosening the 4 Pict. 40 fastenina clips
- Rotate the instrument panel to the open position
- Remove the rear instrument panel cover by unscrewing the 4 screws
- Identify the terminals next to the PCB
- Connect the wires of the sensor cable to their respective slots (x5) (Pict. 40).
- Run the cable and hold it in position with the cable grip at the edge of the case
- Position the cable, running it under the cable gripping tabs on the side of the case
- Close the case cover with the 4 screws, paying attention that all the cables running out of the case are correctly positioned -Return the electrical panel to the operational position

OUTDOOR TEMPERATURE SENSOR CONFIGURATION

Accessing the configuration menu (see page 35): enter the password to enable parameter modification and change parameter "P11" from 0 to 1.


CONFIGURING THE CLIMATE CURVE FROM THOSE AVAILABLE

Operation in external sensor mode makes the significant savings in gas consumption. boiler heat the water in the central heating. It is possible to adapt the boiler's response circuit to a temperature which depends on based on the climatic conditions present by the temperature measured by the external configuring the slope of the climate curve sensor, in other words the temperature outside via the corresponding parameter on page the heated building. Running in external P12 It's also possible by pressing buttons "C" sensor mode automates the boiler's response and "D" (these lose the function of increasing to climatic variations, allowing a high level of and decreasing CH temperature) to make a home comfort to be maintained while making further improvement of climate curve variable

from 15 to 25.

The configuration of parameter P12 è indicated in the graph (Pict.41)

Pict. 41

Example

With an external temperature of 0°C a CH flow temperature of 70°C is needed, it's necessary to:

- Set P12 parameter value to 10 (K1)
- Adjust by pressing "C" and "D" buttons the value to 20

SPECIAL FUNCTION

ANTI-FROST:

This function is always active, whatever mode the boiler is in.

In order to allow this function to fulfil its purpose, the device must be:

- Turned on
- Connected to the mains gas supply
- circuit must be open
- The shut-off valve on the gas supply line must be open
- No fault conditions must be present

If the temperature measured by the sensor on the central heating flow circuit is < 4°C, circulation is activated, the diverter valve (when present) switched to the CH circuit and the burner lit at minimum power.

When the temperature measured by the sensor reaches 35°C, the function is • The shut-off valves on the central heating deactivated by turning off the burner and restoring the previous conditions.

> Also for DHW circuit, the antifrost function activates at 4° temperature and deactivates 10°.

THIS FUNCTION DOES NOT GUARANTEE COMPLETE AND CERTAIN PROTECTION OF THE SYSTEM FROM TOTAL OR PARTIAL FREEZING!

WHEN CONSIDERED NECESSARY, AND WHEN THE SYSTEM IS CERTAIN TO BE EXPOSED TO LOW TEMPERATURES, IT IS POSSIBLE TO ADD ANTIFREEZE TO THE CENTRAL HEATING CIRCUIT.

ONLY USE ANTIFREEZE WHICH IS COMPATIBLE WITH THE CENTRAL HEATING SYSTEM DEVICES AND EQUIPMENT. CAREFULLY FOLLOW THE INSTRUCTIONS FOR USE.

CIRCULATOR DEVICE/DIVERTER VALVE ANTI- ANTI FREQUENT IGNITION FUNCTION: LOCK FUNCTION:

"SUMMER" or "STANDBY / OFF" modes purpose, the device must be:

- Turned on
- circuit must be open
- No fault conditions must be present requests to the boiler in the previous 24 hours. between one ignition and the next. The function stops the devices from locking up, which is possible after long periods of inactivity, by switching the diverter valve (when present) to the central heating circuit and running the circulator device for a predetermined time (35 sec).

This function is active when the boiler is in The function is active when the boiler is in heating mode (season selector A on winter) and parameter P5 in the "CONFIGURATION" In order to allow this function to fulfil its menu is enabled. The function does not allow unnecessarily frequent ignitions to satisfy heating requests when the system water • The shut-off valves on the central heating temperature is near that set by the selector. The parameter P5 is set to 0 when the function is not enabled and can have a value up The function is activated if there are no to 255 indicating the wait time in minutes

THERMOSTAT POST CIRCULATION/VENTILATION FUNCTION

In winter mode:

disposal function by circulator pump ignition ignition is activated. is activated.

decrease. This function is displayed by E06 flashing. flashing.

In summer mode:

In order to prevent an overheat stress, in In order to prevent an overheat stress, in case at the end of a DHW intake the heat case at the end of a CH request the heat exchanger temperature is too high, a heat exchanger temperature is too high, a heat disposal function by circulator pump and fan

This function remains active until the This function remains active until the temperature values of heat exchanger temperature values of heat exchanger decrease. This function is displayed by E06

DEAFRATION FUNCTION

Following each ignition consequent to a power disconnection, boiler starts automatically the circulator pump; this activates ignition cycles in CH and in DHW to remove residual air in the CH circuit.

THIS FUNCTION MAY BE DISABLED BY "P3" PARAMETER

TECHNICAL DATA SHEET

DATI TECNICI	U.M.	TheA++ MR/CR Kondens	TheA++ MN/CN Kondens	
Category		II2H3P II2H3P		
Туре		C13 C33 C43 C53 C83 C13 C33 C43 C53		
Nominal load	kW	34,8 34,8		
Minimum nominal load	kW	5,29	5,29	
Maximum load (80°/60°)	kW	33,49	33,49	
Minimum load (80°/60°)	kW	5,12	5,12	
Maximum load in condensing (50°/30°)	kW	36,3	36,3	
Minimum load in condensing (50°/30°)	kW	5,65	5,65	
Max efficiency (80°/60°)	%	96,2	96,2	
Min efficiency (80°/60°)	%	96,7	96,7	
Max efficiency in condensing (50°/30°)	%	105	105	
Efficiency at partial nominal load (50°/30°)	%	106,9	106,9	
Max exhaust temperature*	°C	64	64	
Mass flow rate	g/s	15,9	15,9	
Min. Mass flow rate	g/s	2,52	2,52	
Heat loss from chimney when burner off	%	0,18	0,18	
Heat loss from chimney when burner off	%	3,16	3,16	
Heat loss from chimney when burner on (max power)	%	2,2 2,2		
Heat loss from boiler surface area (Max power)	%	0,6	0,6	
Heat loss from boiler surface area (Min Power)	%	1,1	1,1	
NOx class		6	6	
Max available pressure exhaust+suction (0,5 Ø 80 mm separate pipes)	Pa	119 119		
DHW nominal load	KW	34,8	1	
Min. DHW nominal load	KW	5,29	1	
CH min/max operating pressure	bar	0,8/3 0,8/3		
Power supply	Volt -Hz	230-50	230-50	
Maximum absorbed electric power	W	170 170		
IP rating	IP	x4D x4D		
Expansion vessel		2x6 lt	2x6 lt	
Expansion vessel pre-charge	bar	1	1	
Max DHW pressure	bar	6 /		
Min. DHW pressure	bar	0,5 /		
DHW flow rate at Δ t 35°C	I/min	13,9	1	
DHW min. flow rate	I/min	1,6	1	
DHW flow limiter	I/min	1	1	

FUEL		TheA ⁺⁺ MR/CR Kondens	TheA ⁺⁺ MN/CN Kondens
Gas Consumption at Nominal Load	G20 m/h 3	3,68	3,68
	G31 k/gh	2,67	2,67
Gas Consumption at minimum Load	G20 m/h 3	0,56	0,56
	G31 k/gh	0,43	0,43

TECHNICAL PAR	AMETERS ACCO	RDING TO ERP (812/2013)	_
			TheA ⁺⁺ MR/CR Kondens	TheA ⁺⁺ MN/CN Kondens
Energy Season Efficiency Class for Room Heating	-	-	A	А
Nominal Load	PNominal	kW	35	35
Energy Season Efficiency for Room Heating	ηS	%	93	93
HEAT LOAD				
At Nominal Load and High Temperature	P4	kW	33,49	33,49
At 30% Nominal Load and Low Temperature	P1	kW	11,5	11,5
EFFICIENCY				
At Nominal Load and High Temperature	η4	%	86,7	86,7
At 30% Nominal Load and Low Temperature	η1	%	96,3	96,3
AUXILIARY POWER CONSUMPTION				
Full load	elmax	kW	0,0605	0,0605
Partial load	elmin	kW	0,02138	0,02138
Stand-by	PSB	kW	0,002	0,002
OTHER PARAMETERS				
Heat Loss in Stand-by mode	Pstby	kW	0,06	0,06
Power Consumption of pilot flame	QHE	GJ	104	104
Annual Power Consumption	LWA	dB	49	49
Inner Sound Power Level	NOx	mg/kWh	37	37
FOR COMBI BOILERS			•	
Declared Load Profile	-	-	XL	/
Hot Water Power Efficiency	Qelec	kWh	0,301	/
Annual Power Consumption	AEC	kWh	66	/
Annual Gas Consumption	ηvh	%	83	/
Daily Power Consumption	Qfuel	kWh	23,95	/
Daily Gas Consumption	AFC	GJ	18	/

Conctact: KLEINE KESSEL, Via Solferino 55/E, 25122 Brescia, tel. sede operativa +39 0523 850513 www.produzionecaldaie.it

NOTES

.....

NOTES

.....

.....

KLEINE KESSEL SRL Via Solferino 55/E - 25122 Brescia, BS (Italy)
Sede operativa: Loc. Campogrande 13 - 29013 Carpaneto Piacentino (PC), Italy
tel. + 39 0523 850513 - fax. +39 0523 850712 - www.aircontrol-pc.com - www.produzionecaldaie.it