

INSTALLATION, COMMISSIONING, USE AND MAINTENANCE MANUAL

ITALIAN DESIGN

IVY G6.3 ECO 24/28/32 KW MR/MN MONOTHERMAL BOILER MANUAL VERS. 00/2023 - REV.0

CONTENTS

General requirements	2
-General Information	2
Use and operation	3
-Description of the boiler	2 3 3 4 5 6 7
-Components	3
-Interface description	4
-Season selection	5
-Temperature setting	6
-Operation with room thermostat	
-Operation with external sensor	7 7
-Operation with Opentherm timer thermostat	7
-Faults	8
-Fault codes table	9
Installation	10
-Operational diagram	10
-Three-way boiler functional diagram	10
-Wiring diagram	11
 Graphs for the head available to the system 	12
-Installation	12
-Fastening the boiler to the wall	13
-Layout of connections	14
-Plumbing the boiler	15
-Connecting CH filling cock	15
-Filling the system	15
-Connection to the gas supply	16
 Connection to the electrical system 	17
 Combustion gas evacuation and air intake system: 	
compatible applications	18
 Combustion gas evacuation and air intake system: 	
installation	19
 Checking the effectiveness of combustion 	

gas evacuation -Combustion gas evacuation circuit diaphragms -Air intake and combustion gas evacuation system Adjustment and maintenance -Preliminary maintenance operations -General maintenance operations -SERVICE function -Data Plate -Power adjustment -Gas pressure check -Checking the pressure at the burner -Testing dynamic pressure -Checking pressure at burner at max power -Checking pressure at burner at max power -Checking gas type -Access to configuration menu -Installer menu -Installer menu -Boom Thermostat/Opentherm installation	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
-Installer menu	3
-Deareation function -Technical data sheet	31

GENERAL REQUIREMENTS

EC CONFORMITY DECLARATION (ACCORDING TO ISO/IEC 17050-1)

Kleine Kessel srl estabilished in Loc. Campogrande, 13 - Carpaneto Piacentino whose processes of design, manufacturing and after-sales service are in compliance with requirements of UNI EN ISO 9001:2008 - DECLARES that boilers are in compliance with European Directives and with European Delegates regulations.

Chief Executive Marco Rapaccioli

GENERAL INFORMATION

This manual, supplied with every boiler, should be WARNING! considered as an integral component as it contains instructions for the correct, safe and appropriate installation, use and maintenance of the system.

The manual must always be kept by the user of the boiler and made available for the installation and/or maintenance technicians to consult. It must also accompany the boiler if it should be moved or otherwise transferred.

The manufacturer shall not be held responsible for any damage caused by failure to follow the instructions contained in this manual, nor:

If the boiler is used for purposes other than those for which it was built

If any part or circuit of the boiler is modified

If accessories or kits not approved by the manufacturer are installed

If ordinary and extraordinary maintenance is not performed by qualified personnel

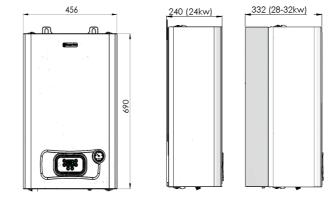
If applicable technical and legal requirements have not been observed during installation and maintenance of the boiler.

If the boiler should cease to function or not function correctly, deactivate it immediately by turning it off and then shutting off the gas supply. Do not attempt any repairs or direct work on the boiler.

Only personnel with the necessary qualifications and licenses must perform maintenance on the boiler. Any repairs must be performed using only original parts and accessories.

SYMBOLS USED IN THE MANUAL

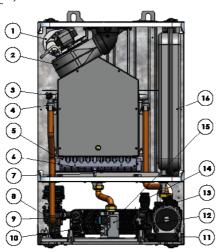
Advice, suggestion, note



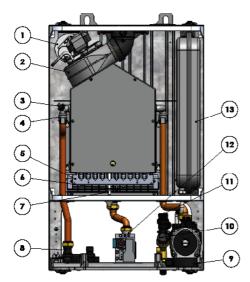
Important communications, signaling of modes and operations which could compromise the correct operation of the boiler and endanger people.

DESCRIPTION OF THE BOILER

best appliances available for domestic indeed available. The flexibility of the Eco central heating and hot water production. range of boilers is also increased by the Their essential but extremely modern and possibility to configure the management elegant lines, compact size, solidity, program of the microprocessor fitted performance, reliability and safety place to the system. This allows to pass from Eco boilers in the category of appliances a reduced number of functions and which are indispensable in every home. configurations which make using the In creating the Eco range of boilers we device easy, immediate and effective chose to design a system which could to a complete configuration with many satisfy a wide range of needs, able to specific options enabled as well as the adapt itself to any situation and thus possibility to interface with external enlarging its field of application. Models control and regulation devices.


The Eco range of boilers represents the ranging from 24 to 32 kW power output are

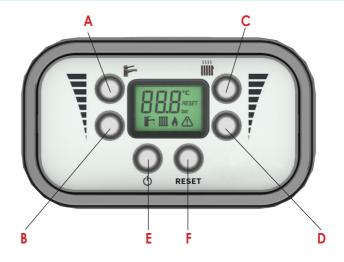
COMPONENTS


Pic ?

Pict. 1

IVY G6.3 ECO (with rapid heat exchanger)

- 1) COMBUSTION GAS PRESSURE SWITCH
- 2) FUME EXTRACTOR
- 3) DOUBLE HEATING SENSOR
- 4) PRIMARY HEAT EXCHANGER
- 5) BURNER
- 6) EARTH ELECTRODE
- 7) IGNITION MONOELECTRODE
- 8) THREE WAY GROUP
- 9) PRESSURE SENSOR
- 10) IMMERSION DHW SENSOR
- 11) CIRCULATOR UNIT
- 12) DHW PRIORITY VALVE
- 13) GAS VALVE
- 14) SAFETY VALVE
- 15) SECONDARY HEAT EXCHANGER
- 16) EXPANSION TANK


IVY G6.3 ECO (Heat only)

- 1) COMBUSTION GAS PRESSURE SWITCH
- 2) FUME EXTRACTOR
- 3) DOUBLE HEATING SENSOR
- 4) PRIMARY HEAT EXCHANGER
- 5) BURNER
- 6) EARTH ELECTRODE
- 7) IGNITION MONOELECTRODE
- 8) HEATING ONLY GROUP
- 9) CIRCULATOR UNIT
- 10) WATER PRESSURE SWITCH
- 11) SAFETY VALVE
- 12) GAS VALVE
- 13) EXPANSION TANK

INTERFACE DESCRIPTION

Pict. 4

- **A.** DHW TEMPERATURE INCREASE
- **B.** DHW TEMPERATURE DECREASE
- **C.** CH TEMPERATURE INCREASE
- **D.** CH TEMPERATURE DECREASE
- **E.** FUNCTION SELECTION
- F. RESET BUTTON

TURNING THE BOILER ON

switch, which must be installed on the power word "OFF" is displayed. supply line to the boiler. The LCD display (will turn on immediately, showing all the available Pict. 5 symbols for 5 seconds, and the program version installed in the microprocessor for further 5 seconds; the unit goes into stand-by and the display shows the word "OFF".

By pushing the "E" button, the boiler goes into "ON" mode; the display shows CH circuit temperature and the "TAP" symbol, thus indicating the summer mode (Pict. 5).

The boiler has now been started and ready to operate.

TURNING THE BOILER OFF

Turn on the boiler's electrical supply by the Pushing several times the "E" button until the

WARNING: In this mode the boiler is inactive but its electricity supply is still connected!

SEASON SELECTION

or the user requirements:

are deactivated and the domestic circuit temperature is shown on the symbol (Pict.6) is displayed; when with the "FLAME" symbol of the ignited the unit is in stand-by, the CH circuit burner; while in DHW mode, the display temperature is shown on the display shows the CH temperature value, the (Pict. 5): during an intake of DHW water, "FLAME" symbol of the ignited burner the DHW temperature is shown together and the "RADIATOR" mode flashing with the flashing "TAP" symbol and symbol (Pict.7). with the "FLAME" symbol of the ignited burner.

The boiler has three operating modes, The **WINTER** mode is activated by which depend on the active functions, pushing "E" button and then the "TAP" in response to the external temperature and "RADIATOR" symbols (Pict.7) are displayed. In this mode, the unit satisfies The **SUMMER** mode can be set, both DHW requests, and CH requests. during which all the CH functions When the unit is in stand-by, the CH hot water production mode only is display; during an intake of DHW water, maintained: this mode is selected by the DHW temperature is shown together pushing "E" button and then the "TAP" with the flashing "TAP" symbol and

> The **HEAT ONLY** mode is activated by pushing "E" button and then the "RADIATOR" symbol is displayed (Pict. 8).

> In this mode, the unit will fulfill CH requests only.

SUMMER EXAMPLE

Pict. 7

WINTER EXAMPLE

Pict. 8

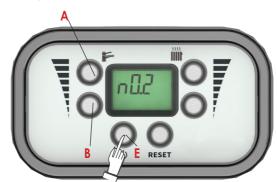
HEAT ONLY

TEMPERATURE SETTING

maintained at the set value.

push "A" button to increase the value and from 27 to 55°C for low temperature systems. "B" button to decrease it: the display shows the corresponding value and the flashing symbol of DHW mode ("TAP"); the set value and the mode symbol are displayed for 5 seconds, then the previous visualization mode is restored and the value is memorized. The minimum DHW temperature which can be set is 30°C, the maximum one is 60°C.

In order to set the supplied CH temperature, push "C" button to increase the value and "D" button to decrease it; the display shows


It is possible to regulate the temperature of the corresponding value and the flashing the domestic hot water supplied as well as symbol of CH mode ("RADIATOR"); the set that for the central heating. Once the desired value and the mode symbol are displayed temperature is set, during the requests the set for 5 seconds, then the previous visualization temperature value is reached, if possible, and mode is restored and the value is memorized. The range of temperature goes from 50 to In order to set the supplied DHW temperature, 80°C for high temperature systems and goes

ASK YOUR AREA INSTALLER FOR INFORMATION ON THE TYPE OF SYSTEM CONNECTED AND **RESPECTIVE ADJUSTMENTS**

INTERFACE DESCRIPTION

By accessing the "Information Menu" pages, it is possible to consult the information that is shown on the display without any possibility of modifying the functional parameters. To access the "Information Menu" press the "E"

key. The successful access will be confirmed by the display of the menu page alternating with the relative value. To scroll the pages use the "A" and "B" keys

Code	Information menu contents
n02	DHW temperature
n03	Return sensor temperature (if present)
n05	External sensor temperature (if present)
n21	Last fault code
n22	Second to last fault code
n26	CH temperature

Pict. 9

OPERATING BY ROOM THERMOSTAT

In compliance with current standards in terms of energy saving, the device must be connected to a room thermostat for optimal temperature adjustment and maintenance in domestic environments.

ASK YOUR AREA INSTALLER FOR INFORMATION ABOUT INSTALLATION AND FUNCTIONING OF ROOM THERMOSTAT

OPERATION WITH EXTERNAL SENSOR

sensor. In this mode, the system can regulate increasing or decreasing the central heating the central heating circuit temperature circuit temperature, the temperature itself automatically based on the temperature (temperature offset) adapts to the selected measured by the suitably located sensor on climate curve. the outside of the building.

Adjustments are made automatically to the central heating circuit temperature using a pre-loaded mathematical algorithm. Different "climate curves" can be selected by modifying the correct parameters, allowing the boiler to be optimized for a specific climatic area or season.

It is possible, in any case, to customize the

The boiler can be connected to an EXTERNAL central heating circuit temperature; by

REQUEST INFORMATION ON INSTALLATION OF THE EXTERNAL SENSOR AND OPTIMAL REGULATION OF THE BOILER TO YOUR AUTHORISED AREA INSTALLER.

OPERATION WITH OPENTHERM TIMER THERMOSTAT

For optimum and even more economical management of the domestic premises it is

possible to use the ECO CRONO programmable timer thermostat. ECO CRONO allows all main boiler functions to be managed remotely,

allowing it to be fully managed from a different room to that where the boiler is installed.

ECO CRONO can also be used to schedule daily and weekly room temperatures and manage reduced demand periods (holidays, anti-frost and maintenance modes).

REQUEST INFORMATION ON INSTALLATION OF THE EXTERNAL SENSOR AND OPTIMAL REGULATION OF THE BOILER TO YOUR AUTHORISED AREA INSTALLER.

FAULTS

All functions supported by the boiler are managed by a microprocessor-based system which, aside from allowing the system to run perfectly in order to maintain the greatest level Pict. 10 of comfort possible, constantly monitors the functional parameters, ensuring they fall within the necessary safety interval by a wide margin, and therefore that all devices present are functioning perfectly.

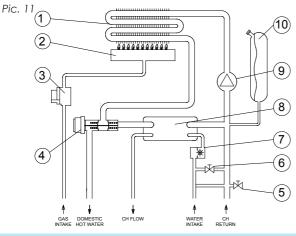
Whenever the malfunction of any component or conditions which could compromise safe operation of the system are detected, the microprocessor system places the device into a limited operation mode or even completely prevents it from operating. The microprocessor system is able to detect and issue warnings for the main fault conditions to allow the system to be brought back to normal conditions as soon as possible. Fault warnings are given on the LCD display. The malfunction is detected and an intermittent warning displayed immediately, consisting of a number preceded by the "E" error symbol (Pict. 10). Faults are displayed on any screen of the main menu.

Conditions causing transitory faults are possible. Many of these are recognized and cause a temporary block which is automatically reset once the condition causing the fault has stopped. Some of these provide for the possibility to attempt to restore operation manually.

To manually reset the system following a fault condition, press "F" button (Pict.4).

If the operation is successful the boiler will return to normal operation; if not, the error code causing the malfunction will be displayed and technical support will be needed.

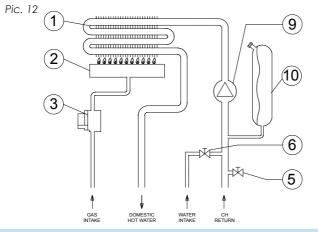
IF A FAULT IS NOT SOLVED AFTER 2 MANUAL RESET ATTEMPTS, THE AUTHORISED AFTER SALES SERVICE MUST BE CONTACTED.


FAULT CODES TABLE (ALL MODELS)

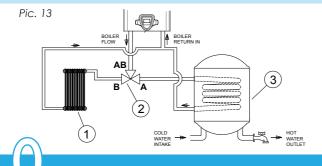
Code	Possible cause	Behaviour	Possible actions
E1	Ignition failed	Boiler locked	Check gas presence Check gas line pressure Check ignition/detection electrodes Check electronic cable Check igniter
E2/E7	Air pressure switch failure	Boiler locked	Check flue draught / flue pipes Check fan
E3	Heating system temperature sensor fault	Boiler locked	Replace CH sensor
E4	Domestic hot water system temperature sensor fault	DHW supplied in provisional mode Heating functions normally	Replace CH sensor
E5	Gas regulation valve fault	Boiler locked	Check wire connection to modulator Replace gas valve
E6	High temperature detected by heating system sensor	Device in stand-by Normal DHW supply	Wait for automatic unlocking
E8	Central heating system pressure too low	Boiler locked	Check pressure to CH system
E9	Central heating system water temperature too high	Boiler locked	Reset the boiler Consult technical support
E12	Remote control reset used-up	Boiler locked	Reset system Switch off power
E13	SYSTEM error	Boiler locked	Reset system Switch off power Replace electronic board
E15	Fault in the exhaust system	Attempt to restore safety conditions in progress	Check of chimney / flue gas line draft Check of fan functioning
E23*	Fault on external temperature sensor	Resumption of operation without external sensor	Check position of external probe Check communication line Replace external sensor
E28*	Water cylinder / water heater probe failure	Boiler locked	Replace probe
E88	Communication error Open Therm	Boiler locked	Check of boiler /Open Therm connection
E99	Parameter configuration error	Boiler locked	Check and reconfigure the parameters

INSTALLATION

OPERATING DIAGRAM (MR)

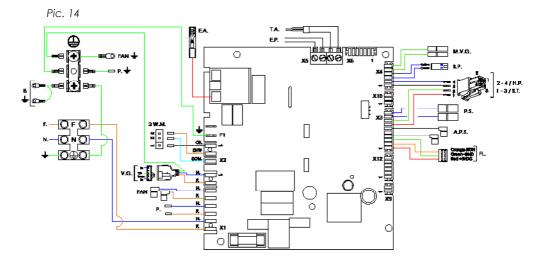

COMBINATION: DOMESTIC HOT WATER + CENTRAL HEATING

- 1) Primary heat exchanger
- 2) Burner
- 3) Gas valve
- 4) Three-way valve
- 5) Safety valve
- 6) Filling loop cock
- 7) Hot water priority turbine
- 8) Secondary heat exchanger
- 9) Circulator unit
- 10) Expansion tank

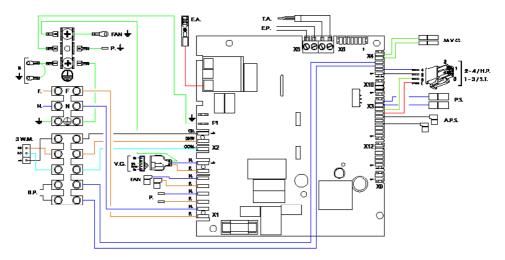

OPERATING DIAGRAM (MN)

CENTRAL HEATING ONLY

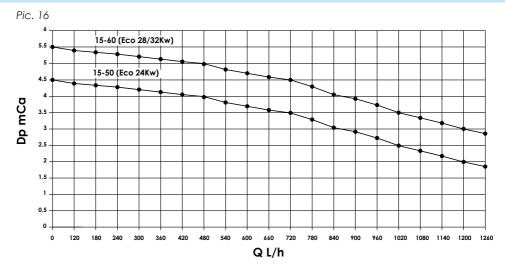
- 1) Primary heat exchanger
- 2) Burner
- 3) Gas valve
- 5) Safety valve
- 6) Filling loop cock
- 9) Circulator unit
- 10) Expansion tank


DHW STORAGE TANK- THREE WAY VALVE OPERATIONAL DIAGRAM

Central heating circuit
 Three-way valve
 DHW storage tank


ELECTRICAL WIRING DIAGRAM (MR)

COMBINATION: DOMESTIC HOT WATER + CENTRAL HEATING


ELECTRICAL WIRING DIAGRAM (MR)

CENTRAL HEATIN ONLY Pic. 15

	Wiring list						
3.W.M.	S Way valve	F.	Phase	NL	Neutral	5.T.	Sofely thermosical
AP5	Air pressure switch	EAN	Fan	P.	Pump	V.G.	Gas valve
8.	Earth boiler	FL.	Flow switch	P.S.	Pressure Switch	8.P.	Bailer probe
EA.	ignition electrade	н.р.	Chisersor	5.P.	DHW sensor		
EP.	Edenci probe	MLV.G.	Gas valve Modulatar	T.A.	Room thermaskat		

GRAPHS FOR THE HEAD AVAILABLE TO THE SYSTEM

INSTALLATION

Use:

to current technical standards and the most and authorised personnel. stringent safety rules. Despite this, improper • Do not install the boiler in environments use may endanger persons and property as containing dust or strong vapours. well as damaging the boiler itself.

generator for closed-loop central heating sprays, solvents or detergents, paints, systems and for the production of domestic adhesives or fuels) may cause the boiler's hot water.

This boiler is only for heating water to a system to corrode and become damaged. temperature below that of boiling point at Avoid installing the boiler directly in atmospheric temperature.

to be considered improper. The manufacturer/ cleaning companies etc.). supplier declines any responsibility for • The boiler must be installed in ventilated damage or injury caused by improper use.

Use of the boiler according to its design also • Install the device respecting the minimum the operation and maintenance manuals installing inside an enclosure). and observing the general inspection and • Mount the boiler on a solid wall. maintenance conditions.

General requirements

 Installation must only be performed by
 Ensure you do not drill into tracked cables qualified and licensed personnel. They also or piping when drilling. assume responsibility for correct installation, adjustment and commissioning.

Adjustment, maintenance and repair of the The boiler has been constructed according boiler must only be performed by gualified

The presence of substances such as fluorine, This boiler has been designed as a thermal chlorine, sulphur etc. (e.g. vapours from components or combustion gas evacuation

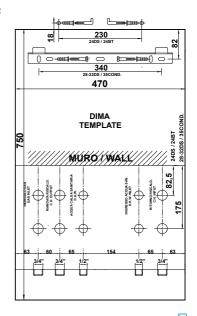
commercial/industrial premises (e.g. hair Any use different from those outlined herein is salons, painting/carpentry workshops,

premises.

means respecting the instructions given in distances and spaces in Pict. 17 (also when

• Ensure that there are no depressions which could cause the boiler to stand out from the wall.

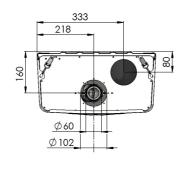
FASTENING THE BOILER TO THE WALL

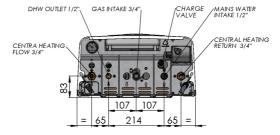

Attach the cardboard template giving the *Pict*. 18 connection and fastening schemes to the wall, paying attention to the boiler dimensions and necessary clearances. (Pict. 18)

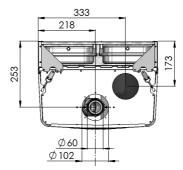
• Use a suitable bit to drill the holes indicated by the two wall plug symbols on the template.

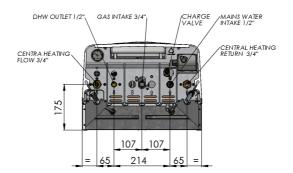
• Remove the template; insert the two wall plugs in the previously prepared holes, then hang the boiler, inserting the hooks of the plugs in the specific holes.

Fasten the template so that its axis coincides perfectly with that of the boiler




Pic. 17


LAYOUT OF CONNECTIONS


Pic. 19

24 KW

28/32 KW

PLUMBING THE BOILER IN

Connect the water and central heating pipes to the boiler, respecting the positions and distances indicated (Pict. 17-18); take particular care when connecting pipes to ensure they are not placed under pressure in order to minimise the danger of future leaks. Use appropriate tools and procedures for tightening.

Flush thoroughly before connecting the pipes to ensure that any impurities present in the piping and radiators are completely removed.

Connect the safety valve outlet so that its operation would not cause any damage to persons or property

• Use piping of not less than 1/2" diameter

• Ensure that the line is always at atmospheric pressure by using suitable traps (do not connect pipes directly to the valve outlet) • Connect the safety valve outlet line to the household grey water drainage system

• Apply suitable protection to the drainage line – the water carried in it may be at high temperatures • THE MANUFACTURER ASSUMES NO RESPONSIBILITY FOR DAMAGE CAUSED TO PERSONS OR PROPERTY DUE TO OPERATION OF THE SAFETY VALVE DO NOT USE THE PLUMBING PIPEWORK CONNECTIONS AS EARTH POINTS FOR ELECTRICAL EQUIPMENT.

CONNECTING FILLING COCK FOR CENTRAL HEATING ONLY BOILERS

In order to fill the system, it is sufficient to *Pic. 20* connect the supplied ball valve to the 1/2" DHW intake and connect this to a water pipe.

FILLING THE SYSTEM

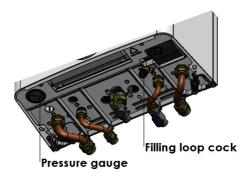
When all of the boiler connections have a pressure of between 1.3 and 1.6 bar has been plumbed in, it is possible to proceed been reached

to fill the central heating circuit. Perform the • Close the filling loop and then

operation slowly to help all air bleed out of the system. When filling, check all the internal and external parts of the system to make sure they are perfectly tight.

Open the bleed valves on the radiators

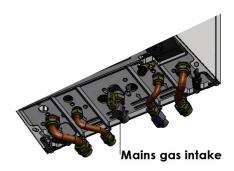
• Gradually open the filling loop cock Pict. 21, ensuring that any automatic air bleed valves installed on the system are working correctly.


• Close the radiator bleed valves as soon as water starts to come out

· Check on the boiler pressure gauge that

Perform the filling and topping up of the system with the boiler completely off and all parts at ambient temperature.

Always close the filling loop cock once you have finished the operation.



CONNECTION TO THE MAINS GAS SUPPLY

Before connecting the boiler to the mains gas, check that it is designed to function with the available type of gas. Thoroughly flush all the gas pipes to remove any Pic. 22 residues which could compromise correct operation of the boiler.

The gas supply must be connected to the boiler intake (Pict. 22), following all applicable regulations. Rigid metal piping or continuous-wall stainless-steel hose must be used and a shut-off valve must be connected before the boiler.

Check that the flow rate from the line from the gas meter is sufficient to support the simultaneous use of all equipment connected to it. Check that there is no significant drop in pressure along the distribution line from the gas meter; pipes of sufficient diameter must therefore be used to satisfy this requirement.

Check that all connections are perfectly tight before opening the boiler's gas connection.

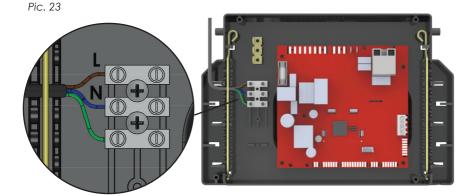
Check that all devices necessary for creating and limiting the maximum permissible pressure of the relative gas are installed in the system before opening the boiler's gas connection.

Do not use the gas supply pipework connections as earth points for electrical equipment.

Always install a gas shut-off valve before the device. This must have a YELLOW valve handle and must be placed in a position which allows full access to it.

CONNECTION TO THE MAINS ELECTRICAL SYSTEM

For safe installation of the boiler it must also be correctly connected to the mains electrical supply in accordance with all applicable regulations, and in particular it must be connected to a suitable protective earthing system.


The device is fitted with a three-core electrical cable supplied without a plug. It must be connected to the mains with a dedicated connection via a dual-pole switch whose contacts have an opening of at least 3 mm. It is important to respect the correct polarity (LIVE: brown cable / NEUTRAL: blue cable / EARTH: yellow-green cable) when wiring in the boiler. When installing or replacing the power-supply cable, the earth conductor must be left 2 cm longer than the others. If it is necessary to completely replace the pre-

wired power-supply cable, it will be necessary to access the PCB compartment:

- Cut power to the boiler using the power switch installed before it
- Remove the lower cover by removing the four screws; turn the instrument panel to the open position
- Remove the rear case cover by unscrewing the 4 screws
- Identify the terminals next to the PCB (Pict. 23) and disconnect the live, neutral and earth poles of the pre-wired cable; remove the cable.

Connect the new cable in the same position

- Close the rear cover and screw it closed
- Return the panel to its operational position and reposition the lower protection.

For connecting or replacing conductors, use H05VV -F, H05VVH2-F CEI EN 60228 or better rated cable.

A qualified electrician should check the suitability of the protective earth system. The manufacturer is not responsible for any damage caused by the lack of a suitable system earth.

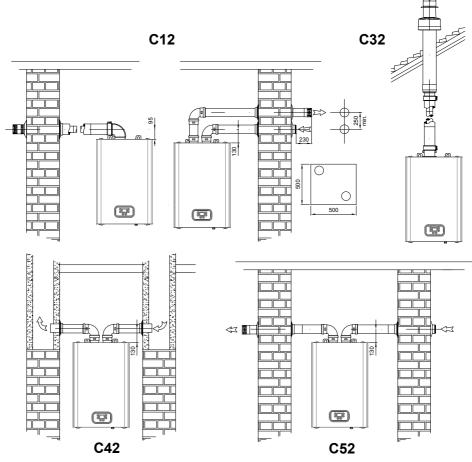
Check that the electrical connection is sufficient to satisfy the boiler's maximum power consumption, indicated on the boiler plate.

Extensions, adaptors or gang sockets must not be used when connecting the device to the mains electrical system.

Before accessing the control panel internal components, make sure the boiler is turned off.

COMBUSTION GAS EVACUATION SYSTEM: COMPATIBLE APPLICATIONS

The boiler is a type C room-sealed fan-assisted • C42 combustion gas evacuation and air connected to a combustion gas evacuation/ are exposed to similar wind conditions air intake system. The types of permissible air • C52 separate horizontal or vertical flues, systems are listed on the technical data plate pressures and summarised below:


device; the air intake and flue must be intake in separate common flues, but which

intake and combustion gas evacuation (flue) in any case in areas exposed to different

· C62 combustion gas evacuation and air

• C12 concentric wall flue. The pipes may also intake performed with pipes sold and certified be split, but the outlets must be exposed to separately. similar wind conditions.

• C32 concentric vertical flue (with the same specifications as type C12)

Pic. 24

COMBUSTION GAS EVACUATION SYSTEM: INSTALLATION

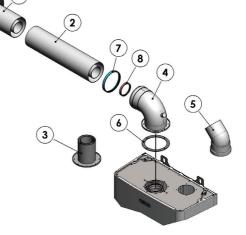
intake and flue evacuation systems.

on the same axis. The system provides for all components with their relative characteristics:

The boiler, based on its UNI 7129 classification, components necessary for completing the can be connected to COAXIAL and SPLIT line, including changes of direction, straight sections of various lengths, connections to The "coaxial" system is composed of a single the boiler and outside terminals as well as all pipe containing both the flue and intake pipes necessary seals. Below is a list of compatible

60/100 mm DIAMETER COAXIAL SYSTEM

No.	Description	Pressure drop (Pa)	Equivalent length m
1	Terminal L.990	25	2.8
2	Extension L.1000 M-F	6	1
3	Vertical flanged coupling M	15	2.2
4	90° elbow M-F	7	1.3
5	45° elbow	6	1
6	Neoprene gasket d 128		
7	Intake gasket d 100		
8	Flue evacuation gasket d 60		


Pic. 25

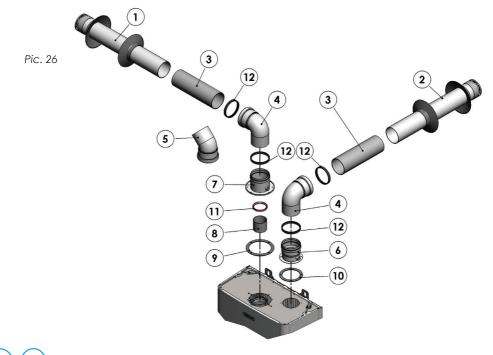
The large pressure drops which characterise this system limit its length. The maximum possible length therefore depends on the components used to create the line and can be determined by adding the "Equivalent lengths" for each individual component used (excluding the initial 90° elbow) listed in the "COAXIAL SYSTEM" table.

IT IS ESSENTIAL NOT TO EXCEED THE MAXIMUM PERMISSIBLE LENGTH!

Consult the maximum length values listed in the "FLUE SYSTEMS TECHNICAL CHARACTERISTICS" on page 23 for COAXIAL systems relative to the type of device installed.

The "split" flue system is composed of one pipe for combustion gas evacuation connected to the fan outlet and one for the air intake connected to the hole on the roof of the sealed chamber. The system provides for all components necessary for completing the

line, including changes of direction, straight sections of various lengths, connections to the boiler and outside terminals as well as all necessary seals, for both pipes. Below is a list of compatible components with their relative characteristics.


SPLIT SYSTEM 80 mm diameter:

No.	Description	Pressure drop (Pa)	Equivalent length m
1	Intake terminal L.950	15	0.8
2	Flue evacuation terminal L.990	3.5	1.5
3	Extension M-F L.1000	3	1
4	90° elbow M-F	14	3
5	45° elbow M-F	7	1.3
6	Intake adaptor d 80		
7	Flue evacuation adaptor d 80		
8	L50 d 60 flue evacuation connection		
9	Neoprene gasket d 128		
10	Neoprene gasket d 100		
11	Collar gasket d 60		
12	Gasket d 80		

depends on the components used to PERMISSIBLE PRESSURE DROP FOR THE DUCTS create the line and can be determined by (air intake + flue evacuation)! table.

The maximum possible length therefore IT IS ESSENTIAL NOT TO EXCEED THE MAXIMUM

adding the "Equivalent lengths" for each Consult the maximum PRESSURE DROP individual component for both the intake and values listed in the "FLUE SYSTEMS TECHNICAL evacuation lines listed in the "SPLIT SYSTEM" CHARACTERISTICS " for SPLIT systems relative to the power and type of device installed. (page 21)

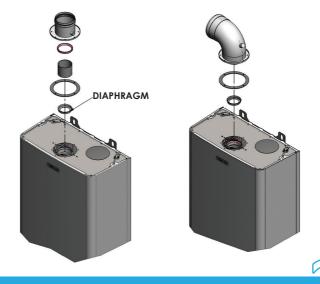
CHECKING THE EFFECTIVENESS OF THE COMBUSTION GAS EVACUATION SYSTEM

WARNING:

switch) and using a pressure switch differential power and type of device. of a suitable range 0 - 500 Pa.

The detected value shall not be less than Check the installation of the air/exhaust system shown in the table "EXHAUST TECHNICAL (for both types) by detecting the pressure of FEATURES SUMMARY ", column "SIGNAL" for the fan exhaust fumes (signal to the pressure the exhaust system and for the examined

Model	Power			SPLIT SYSTEM (intake + flue evacu	ation)
		Max length	Signal	Max pressure drop (intake/flue evacuation)	Signal
Eco 24 MR/MN	24 kW	5 m	>80 Pascal	170 Pascal	>80 Pascal
Eco 28 MR/MN	28 kW	5 m	>92 Pascal	175 Pascal	>92 Pascal
Eco 32 MR/MN	32 kW	5 m	>110 Pascal	145 Pascal	>110 Pascal


FLUE SYSTEMS TECHNICAL CHARACTERISTICS

COMBUSTION GAS EVACUATION CIRCUIT DIAPHRAGMS

keeping the functional characteristics of evacuation and air intake system. the device unchanged, in compliance with The "DIAPHRAGMS" table below gives all applicable regulations regarding energy the dimensions of the diaphragms to be output efficiency, it is necessary to fit a positioned at the fan outlet (Pict. 27) by type diaphragm between the fan and flue duct for of duct and boiler. systems of minimum or intermediate length. The size of the diaphragm depends on the

In order to be able to adapt the air intake type and length of the ducts which the boiler and combustion gas evacuation systems to must be connected to, or in other words the the various installation requirements while pressure drop for the entire combustion gas

Pict. 27

DIAPHRAGMS

COAXIAL SYSTEM		Diaphragm diameter			
BETWEEN	AND	Eco 24 MR	Eco 28 MR	Eco 32 MR	
0.5 metri	1 metri	35 mm	37 mm	39 mm	
>1 metri	2 metri	37 mm	39 mm	41 mm	
>2 metri	3 metri	37 mm	39 mm	41 mm	
>3 metri	4 metri	39 mm	41 mm	44 mm	
>4 metri	5 metri	41 mm	44 mm	-	

SPLIT SYSTEM diaphragm diameter						
Eco 24 MR Eco 28 MR Eco 32 MR						
>70 <100 Pascal	Ø 35 mm	>92 <110 Pascal	Ø 37 mm	>107 Pascal	Ø 35 mm	
>100 <120 Pascal	Ø 37 mm	>110 <150 Pascal	Ø 39 mm	>107 <145 Pascal	Ø 44 mm	
>120 <190 Pascal	Ø 39 mm	>150 <175 Pascal	-	≥145 Pascal	-	
		-	-			

ALWAYS CONNECT A MINIMUM FLUE EVACUATION AND INTAKE SECTION FOR BOTH SYSTEMS OF AT LEAST 0.5 METRES (COAXIAL PIPE = 0.5m + 90° ELBOW; SPLIT 0.25 m FLUE EVACUATION + 0.25 m INTAKE + RESPECTIVE 90° ELBOWS)

AIR INTAKE AND COMBUSTION GAS EVACUATION SYSTEM: IMPORTANT INFORMATION

FOLLOW APPLICABLE LEGISLATION AND REGULATIONS TO THE LETTER

INSTALL AIR INTAKE AND FLUE EVACUATION SYSTEMS CONFORMING TO THE SPECIFICATIONS GIVEN ON THE TECHNICAL DATA PLATE AND OBSERVE ANY LIMITATIONS ARISING FROM APPLICABLE LEGISLATION AND REGULATIONS TO THE LETTER.

ONLY USE APPROVED COMPONENTS FOR AIR INTAKE AND COMBUSTION GAS EVACUATION SYSTEMS WHICH ARE OF THE CORRECT DIMENSIONS AND PURPOSELY DESIGNED AND MANUFACTURED FOR THE PURPOSE.

FOLLOW INSTALLATION INSTRUCTIONS TO THE LETTER.

INSULATE ANY FLUE SECTIONS WHICH WILL BE EXPOSED TO LOW TEMPERATURES.

TAKE MEASURES TO AVOID THE FORMATION OF EXCESSIVE CONDENSATION. ENSURE THAT ANY CONDENSATION DOES NOT EVEN MINIMALLY AFFECT ANY INTERNAL PART OF THE BOILER.

WHENEVER NECESSARY, PLACE APPROPRIATE CONDENSATE TRAPS ON THE FLUE EVACUATION LINE:

Ensure the following before commissioning the boiler:

- THAT THE FLUE EVACUATION AND AIR INTAKE LINES ARE PERFECTLY SEALED
- THAT THEY ARE CORRECTLY POSITIONED AND FASTENED

• THAT THERE ARE NO MECHANICAL, THERMAL OR CHEMICAL STRESSES ON THE LINES WHICH COULD EVEN MOMENTARILY COMPROMISE THEIR INTEGRITY.

INSTALL SYSTEMS TO ABSORB ANY THERMAL EXPANSION WHEN THE SECTIONS OF FLUE DUCTING ARE LONGER THAN THE MINIMUM SPECIFIED LENGTHS.

ADJUSTMENT AND MAINTENANCE

PERFORMED BY QUALIFIED PERSONNEL.

in full compliance with all applicable in order to keep it in optimum operating legislation and regulations. The boiler should condition.

All maintenance operations MUST BE be inspected by a qualified technician at the end of every heating season (winter) These operations must also be performed and whenever else it is considered necessary

PRELIMINARY MAINTENANCE OPERATIONS

Declaration of conformity check.

•Check the log book.

Check that the Instruction Manual is present

 Visual check of the installation (in conformity with applicable regulations).

•Visual check of the flue system.

•Check that combustion gases are being properly evacuated.

GENERAL MAINTENANCE OPERATIONS

•Clean any deposits on the heat exchangers	 Check that the boiler's control and
and electrodes	regulation devices are functioning correctly
 Remove any oxidation on the burner 	 Check that the combustion gas evacuation
·Check that the boiler ignites, turns off and	device and/or duct is in good condition and
functions correctly	operating correctly
·Visual check for leaks in gas and water pipes	•Perform a visual check that the safety valve
and unions	outlet is not blocked
•Check that the safety devices are	 Check hydraulic system static pressure
operational	

If any components of the boiler require replacement, original spare parts supplied by the manufacturer must be used. Use of other components could compromise correct operation of the device. The manufacturer declines any responsibility for consequences linked to the use of non-original spare parts.

At the end of the maintenance procedure a report must be prepared and left with the owner. This must contain the findings of the inspection, any work performed and any recommendations.

SERVICE FUNCTION

The function is conceived to allow to place To activate the "SERVICE" function, press the the device in maximum and minimum power "E" and "F" keys simultaneously for a minimum functional conditions, during maintenance and of 3 seconds (Pict.28). adjustment operations.

check that all the conditions specified in the to change the value. chapter "1st ignition" are satisfied.

Function activation:

Upon release, the Installer Menu can be The activation of the "SERVICE" function accessed, confirmed by the value P00 on the requires the complete installation of the display. Scroll through the pages using the "A" appliance; before activating the function, key up to page P06. Use the "C" and "D" keys

> During "SERVICE" mode, the diverter valve sets the appliance to operate in heating mode.

P06	0 = disabled	1 = minimum power	2 = maximum
-----	--------------	-------------------	-------------

power

Pic. 28

MAKE SURE THAT: THE CENTRAL HEATING SYSTEM IS CHARGED AND PRESSURISED; ANY SHUT-OFF VALVES FITTED TO THE CH FLOW AND RETURN AND ON THE GAS LINE ARE OPEN: THE GAS SUPPLY IS AVAILABLE; ANY CONTROL VALVES ARE TURNED TOWARDS THE SYSTEM; THE SPECIFICATIONS FOR CORRECT INSTALLATION AND COMMISSIONING OF THE BOILER HAVE BEEN OBSERVED.

If the function remains activated for long The boiler exits the function automatically periods of time an increase in pressure may after 15 minutes of operation, or bringing back occur in correspondence with the system's parameter P06 to 0. terminals.

All safety measures are active when in SERVICE mode, in particular those for the control of the maximum temperature in the central heating circuit via the flow temperature sensor; on reaching 80°C the function is suspended.

DATA PLATE

TECHNICAL DATA PLATE

				1
			•	0= Supervisory body
			CE 0	A= Type of boiler
-		A (G	B= Boiler model
Туре:	A	Cat.:		C= Serial Number
Serial number	В	Туре:	Н	D= Code
Code:	С	Date:	Ι	E= Country of destination
Country of destination:	D	PIN Code:	J	F= Manufacturer
Manufacturer:	Е	Class NOx	K	G= Category
Gas:	F			H= Approved types of exhaust exchange configuration
	Flow	Pressure		I= Date of production J= P.I.N. product identification number
Natural gas G20	L/a (m		ar)	K= NOx Class
LPG G31	L/a (kg			L= Set by gas type
C.H. Circuit	12/ a (Rg	5/11) £/0 (1108	ar)	L/a= Load
C.H. CIICUIL	MIN.	MAX.		L/b= Supply pressure
Thermal load: 60/80°		(min.) M/a (kW	(max)	M= Thermal load min 60/80
				M/a= Thermal load max 60/80
Thermal power:60/80°	N kW			N= Thermal power min 60/80
Thermal power:30/50°	O kW		. ,	N/a= Thermal power max 60/80
Work Pressure:	P (bar)	Work Temperature:	$Q(C^{\circ})$	O= Thermal power min 30/50
				O/a= Thermal power max 30/50
This heat generator can be a	djusted according to the	power required by the installati	on at p. 28 of the enclosed user b	P= C.H. work pressure
Power curves are available d	epending on the number	of fan rotations.		Q= C.H. work temperature
				R= D.H.W thermal load if different from M min.
D.H.W. Circuit:				R/a= D.H.W thermal load if different from M/a max
Thermal load:	R (kW	min.) R/a (kW	max)	S= A.C.S. specific flow rate according to EN625-EN13203-1 T= D.H.W work pressure
Specific flow Δt25:	S (Ì/mi			U= D.H.W work pressure U= D.H.W work temperature
Work Pressure:	T (bar)		U(C°)	V=Seasonal energy efficiency ratio of water heating
WOIR FIESSUIE.	I (bai)	, non temperature.		V/a= Seasonal energy efficiency ratio of room heating
	17(0/)		$M_{\alpha}(0/)$	W= IP protection rate
D.H.W. ErP nwh:	V(%)	C.H. ErP ŋwh:	V/a(%)	X= Gas consumption
IP protection rate:	W	Electric power:	X(W)	Y= Operating temperature
Work Temperature:	Y(C°)	Power supply:	Z	Z= Power supply

POWER ADJUSTMENT

following before running the device: Commissionina

requirements as well as any applicable legislation as causing irreparable damage to the device itself. and regulations.

- That the boiler is correctly plumbed in.

- That the central heating circuit is filled with water at where applicable, is tested for tightness. a suitable pressure.

- That the central heating circuit and all the boiler's hydraulic connections are perfectly tight.

supply according to the electrical code and any in a position which allows full access to it. other applicable regulations.

gas evacuation system in accordance with all maintained and that the boiler is in perfect working applicable legislation and regulations and that order the manufacturer's specifications and compatible - Check the dynamic pressure of the mains gas supply. methods listed on the technical data plate (Pict. - Check the gas pressure in the burner at different 26) are respected. Also check that the condensate outputs. collection system is perfectly tight. Failure to carry out these checks may make the boiler's operation extremely dangerous to the health of people and animals.

- That the gas supplied by the mains network

It is in any case ALWAYS necessary to check the connected to the boiler corresponds to that indicated on the data plate and for which the boiler is set up.

Running the boiler on gas which is incompatible with - That the device has been correctly located and the specifications on the boiler data plate can prove installed in a location satisfying all the manufacturer's extremely dangerous to people and property as well

> - That the entire gas distribution line both inside and outside the building, as well as inside the device,

- That the gas line meets all applicable legislation and regulations, in particular: That a gas shut-off valve is installed immediately before the device. This must - That the boiler is connected to the mains electrical have a YELLOW valve handle and must be placed

Commissioning / periodically:

- That the boiler is connected to the combustion - Check that the above specifications have been

inside the device, where applicable, is tested **Commissioning / periodically:** for tightness.

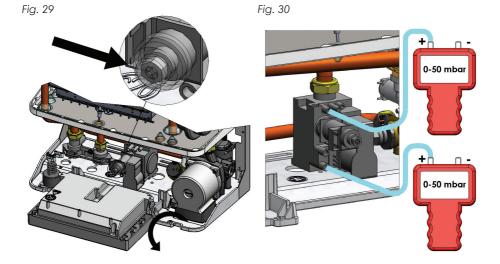
legislation and regulations, in particular: That perfect working order. a gas shut-off value is installed immediately - Check the dynamic pressure of the mains before the device. This must have a YELLOW gas supply. valve handle and must be placed in a position - Check the gas pressure at the burner while which allows full access to it.

- Check that the above specifications have - That the gas line meets all applicable been maintained and that the boiler is in

running the boiler at various levels.

GAS PRESSURE CHECK:

fastening clips

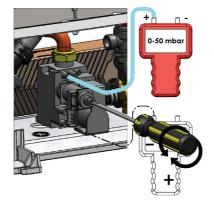

instrument panel to the open position

cap by applying leverage near the mark (Pict. 29)

- Loosen the screw holding the pressure outlet the second input free if present - (Pict. 30) upstream of the regulator and connect it with - Turn on the gas supply by opening the shut-off silicone tubing to the + input of a differential valve located on the meter and open the gas cock manometer with an appropriate range (at least 0 before the boiler.

- Remove the iron cover by loosening the 4 - 50 mbar), leaving the second input free if present (Pict. 30)

- Free up access to the gas valve by rotating the - Loosen the screw holding the pressure outlet after the regulator and connect it with silicone tubing - Remove the gas regulation valve screws protection to the + input of a differential manometer with an appropriate range (at least 0 - 50 mbar), leaving


CHECKING THE PRESSURE AT THE BURNER

checks specified have been carried out.

boiler at minimum power.

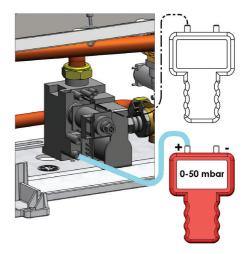
- Check that all preliminary indications and the measured value is the same as that listed in the "min" column of the "Burner pressure" - Activate the SERVICE function and run the table on page 27 for the boiler and gas type used. If the measured value does not - Measure the pressure of the gas after correspond to the table, adjust the central the regulator using the micromanometer adjustment screw on the gas valve until it connected to the relative outlet. Check that does, turning it CLOCKWISE to increase the pressure and ANTICLOCKWISE to reduce it.

TESTING THE GAS SUPPLY DYNAMIC PRESSURE:

- Use the SERVICE function to bring the boiler Check that the value measured with the to maximum power.

regulator (dynamic mains supply pressure). table for the specific type of gas.

Whenever dynamic pressures Pict. 32 below the specified minimum levels should be found:


- Check that there are no kinks. blocks or other impediments to the normal gas flow in the gas supply line to the boiler.
- · Check that the diameter of piping used for the gas supply line is sufficient and constant along the whole length.
- Check that there are no elements in the supply line which could lead to excessive pressure drops, e.g. too many bends, changes of direction, excessively long or countersloping sections etc.
- Consult the gas company on the specified minimum supply pressure values.

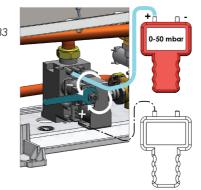
Whenever dynamic pressures above the specified maximum values should be found:

- Install a suitable pressure reducer/regulator on the gas supply line before the boiler.
- Adjust the dynamic pressure of the gas via the regulator, if already present.

manometer falls within the max-min interval - Measure the gas pressure before the given in the "Dynamic mains supply pressure"

DYNAMIC PRESSURE mbar (MAINS)				
G20 (NATURAL GAS)		G31 (PROPANE)		
min	max	min max		
17	25	25 37		

CHECKING PRESSURE AT THE BURNER AT MAXIMUM POWER


micromanometer to the relative pressure ANTICLOCKWISE to reduce it. outlet. Check that the measured value • is the same as that listed in the "max" column of the "Burner pressure" table for the specific type of gas.

Ensure that the SERVICE function is **If the measured value does not correspond** active and configured for maximum to the table, adjust the external adjustment power. Measure the gas pressure screw on the gas valve until it does, turning after the regulator by connecting the it CLOCKWISE to increase the pressure and

> Repeat the measurements of the maximum and minimum pressure at the burner twice.

THE BOILER'S OPERATION AND Pict. 33 SAFETY ARE NOT GUARANTEED IN ANY MANNER IF IT IS SUPPLIED WITH GAS AT PRESSURES MEASURED BEFORE AND AFTER THE GAS REGULATION VALVE WHICH DO NOT CORRESPOND TO THE SPECIFIED VALUES.

	DYNAMIC PRESSURE mbar (MAINS)			
	G20 (NATI	JRAL GAS)	G31 (PR	OPANE)
	min max		min	max
Eco 24 MR	1,4	12,5	5,2	37
Eco 28 MR	1,2	13,0	4,8	37
Eco 32 MR	1,2	11,6	4,7	37

After finishing the gas supply pressure tests:

- Disable the SERVICE function
- Place the device in stand-by (off)
- Disconnect the micromanometer connected before the gas regulator. • TIGHTEN THE PRESSURE OUTLET SCREW UNTIL IT SEALS
- Disconnect the micromanometer connected after the gas regulator.

TIGHTEN THE PRESSURE OUTLET SCREW UNTIL IT SEALS

- Press the gas valve regulation screws cover closed
- Return the instrument panel to its operating position, fastening if necessary
- Refit the lower cover, fastening it with the screws

CHANGING GAS TYPE (ALL MODELS)

up for in the factory.

the change from NG (natural gas) to LPG used in order to maintain the correct gas flow (butane/propane) and vice versa and rate and allow the boiler to operate within its resulting adjustments necessary.

When necessary, it is possible to modify In order to perform this change the boiler's the boiler to run on types of gas which are basic configuration must be modified to that supported but which the boiler was not set necessary to support the supplied type of gas. The first step is to change the burner injectors, This modification concerns in particular which must be adapted to the type of gas rated power range.

CONVERSIONS MUST ALWAYS BE PERFORMED BY QUALIFIED PERSONNEL

the nozzles:

- Completely disconnect the boiler from the electrical vlaguz

- Close the shut-off valve on the boiler gas supply

- Remove the cover of the sealed chamber by inthefront unhooking the upper and lower fastenings

- Disconnect the cable of the ignition electrode - Apply label B1/B2 on the gas valve after removing located in front of the burner trays

- Remove the front cover of the combustion chamber, if necessary

- Remove the burner trays pack by unscrewing the 4 screws for positioning it and fastening it to the gas manifold (Pict. 34)

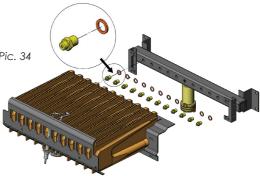
- Remove any air deflectors and conveyors in the Pic. 34 vicinity of the gas manifold, then use a suitable box spanner to unscrew all the injectors

- Check that the type of injectors available corresponds to those specified in the table by model and gas type

- Position the new injectors with their

copper washers (Pict. 34)

- Tighten all the injectors into place


It is necessary to access the burner in order to change - Replace the burner tray pack, fastening it to the manifold with the 4 front screws, together with any previously removed deflectors and conveyors

- Replace and close the combustion chamber cover

- Reconnect the ignition electrode cable located

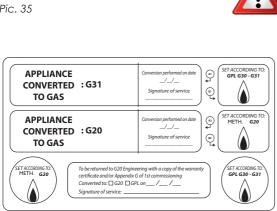
- Replace and close the sealed chamber cover

the old label

		Injecto	or type
Boiler	No. injectors	Natural gas	LPG
Eco 24 MR	11	NP Ø 1.3 mm	NP Ø 0.78 mm
Eco 28 MR	13	NP Ø 1.3 mm	NP Ø 0.77 mm
Eco 32 MR	15	NP Ø 1.3 mm	NP Ø 0.77 mm

CONFIGURING THE SOFTWARE FOR A CHANGE IN GAS TYPE

must check and, in case, update the program distributed and for which the transformation residing in the microprocessor, so that the was carried out, using the values shown in program can adapt optimally the supply to the table: the gas modulator coils.


Once all the gas injectors have been replaced, the microprocessor-based program must be checked and updated if necessary so that it can optimally adapt the power supply to the gas modulator coils.

To adapt (maybe "adjust"??) the modulator ONLY BY SUPPLYING THE GAS MODULATOR valve power driver of the gas regulation IN AN APPROPRIATE WAY. IT IS POSSIBLE TO valve, access the "CONFIGURATION MENU" OBTAIN AND ENSURE A SAFE, PROPER AND and display the value of parameter "A01"; COMPLYING FUNCTIONING.

Once all the gas injectors are replaced, one modify the parameter according to the gas

Gas type	Parameter value A01
Natural gas	0
LPG	1

Pic. 35

THE USE OF INJECTORS DIFFERENT THAN THOSE SPECIFIED CAN ENDANGER PERSONS AND PROPERTY. CHECK THAT THE BURNER TRAY PACK AND ALL OTHER PREVIOUSLY REMOVED COMPONENTS ARE CORRECTLY POSITIONED BEFORE CONNECTING THE GAS SUPPLY AND STARTING THE BOILER.

BEFORE COMMISSIONING THE NEWLY CONFIGURED BOILER IT IS NECESSARY TO CHECK THE GAS SUPPLY PRESSURE BEFORE THE BOILER AND MEASURE AND ADJUST THE GAS PRESSURE AT THE BURNER. REFER TO THE PRESSURE VALUES AND PROCEDURES GIVEN FOR EACH SPECIFIC GAS IN THE "GAS PRESSURE CHECK" CHAPTER (PAGE 28)

COMPLETE THE CHANGE BY ATTACHING THE LABEL A1 OR A2 INDICATING THE CHANGE TO THE NEW TYPE OF GAS FOR WHICH THE BOILER HAS NOW BEEN CONFIGURED. SUPPLIED WITH THE GAS CHANGE KIT, NEAR THE TECHNICAL DATA PLATE LOCATED ON THE REAR INSTRUMENT PANEL COVER.

ACCESSING THE CONFIGURATION MENU

It is possible to view the information or to information on the state or presence INSTALLER/CONFIGURATION MENU.

perform the complete configuration of the of most of the devices, also allows the boiler by accessing the different pages of the configuration parameters to be altered, therefore substantially influencing the device's Accessing the MENU, aside from displaying operation.

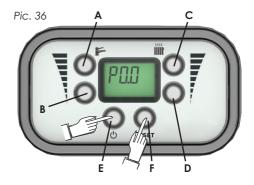
THE ACCESS TO THE INSTALLER/CONFIGURATION MENU IS EXCLUSIVELY RESERVED FOR TECHNICIANS WITH THE NECESSARY QUALIFICATIONS AND LICENSES. THE ARBITRARY MODIFICATION OF ANY PARAMETER CAN CAUSE MALFUNCTIONING OF AND DAMAGE TO THE BOILER. AS WELL AS CREATING A DANGEROUS SITUATION FOR PERSONS AND PROPERTY.

Accessing the menu pages:

Press the "E" and "F" buttons simultaneously for more than 5 seconds: the letter "P" and the number "00" will appear on the display on release (Pict.36)

Selecting a page within the menu:

The information in the menus is organized by pages corresponding to a code that uniquely identifies a parameter and the corresponding value. To select a menu page: enter according to the procedure described in the desired menu; as soon as this mode is activated, the first code of the present parameter is automatically displayed. To scroll the pages use the "A" buttons.


Chanaina the parameter settina:

The value of a certain parameter can be changed after selecting it, by pressing the "C" key to increase and / or "D" to decrease. To store the value press the "B" key.

To exit without saving, press the "E" key or wait for the automatic return to the main menu.

Accessing the installer menu via password:

Access the configuration menu by pressing the "E" and "F" keys simultaneously, and "P00" will appear on release. Pressing the "B" button the word "Cod" will appear and

then "---"; enter the first value by pressing the "C" button; confirm by pressing the "B" button: enter the second and third values in sequence. Once the "198" code has been entered in full, confirm using the "B" button. At this point the access to all the "Axx" parameters is effected.

INSTALLER MENU

Page	Description	Min	Max	Default
P00	Burner ignition power % with NATURAL	0	99	25
	GAS supply			
P01	Burner ignition power % with LPG supply	0	99	50
P02	Burner maximum power %	0	99	99
P03	"Post circulation" time sec	0	99	60
P04	"Post ventilation" time sec	0	99	10
P05	Anti frequent ignition parameter min	0	255	3
P06	SERVICE FUNCTION	0 = deactivated 1 = minimum power 2= 0 maximum power		0
COD	ALL PARAMETER MODIFICATION ENABLE CODE	0-99 198 INSTAL. 275 OEM		
P07	Activation external probe	0 = deactivated 1= activated 0		0
P08	"K"climate curve parameter	10	30	10
P09	Type of system pressure measurement	0 = none - 1= transduce	r 0,5-2,5 V (B type)	3
	device	2 = transducer 0,5-3,5 V	(A type) - 3 =	
		pressure switch 4= flow	switch	

Page	Description	Min	Max	Default
A00	Boiler type setting	0 = combination with plate heat exchanger 1= combination with DHW storage tank 2= central heating only 3 = combination with bithermal primary heat exchanger 4=Water Heater		0
A01	Gas type setting	0 Natural gas	1 LPG	0
A02	System type	1 High temperature	2 Low temperature	1
A03	Plate heat exchanger preheating	0 = not enabled	1 = enabled	0
A04	Min corrent			20
A05	Min corrent			30
A06	Max corrent			120
A07	Max corrent			165
A08	The value added to the D.H.W. set point, corresponds to the primary circuit whater temperature to release D.M.W. in the event of sanitary water sensor failure.	50	80	10
A09	Storage tank regulation setpoint. °C			80
A10	Deta T ON burner °C	-10	10	-3
A11	Deta T OFF burner °C	-10	10	3
A12	DHW input	0= flow switch	1 = tipe A	1
A14	Max CH power time sec.	0	99	5
A16	Deviant setting (230V)	0 = deactivated	1 = activated	1
A17	Control type DHW (if A00=0)	0 = DHW probe	1 = CH probe	0

A21	Selection T.A. or O.T.	0 = T.A.	1 = O.T.	0
A23	Pump type	0 = ON/OFF	1 = PWM	0
A24	PWM pump managing during CH if A23=1 29=OFF	30-100 fixed %	101=auto	101
A25	Delta T during CH (if A32=1)	10	35	10
A26	Delta T during DHW (if A23=1)	10	35	25
A27	PWM pump refresh time during CH	10	200	50
A28	PWM pump refresh time during DHW	10	200	100
A29	PWM pump managment during DHW if A23=1 29=OFF	30-100 fixed %	101=AUTO	101
A30	Min PWM pump speed CH if A23=1	20	100	60
A31	Min PWM pump speed DHW if A23=1	20	100	20
A32	Max temperature offset during AUTO if A23=1	0	50	10
A33	Antilegionella frequency day	0	30	7
A34	Antilegionella temperature °C	65	85	65
A35	Antilegionella temperature time	0 min	30 min	15
A36	OFFSET temperature DHW burner ignition	-10	10	0
A37	OFFSET temperature DHW burner ignition switching off	-10	10	4
A38	Post circ. time in DHW sec.	0	99	60
A39	CH modulation during DHW=0	0 = disabled	1 = enabled	0
A40	Minimum draw function	0 = deactivated	1= activated	1
A41	DHW deactivation demand sec.	0	20	0
A42	CH deactivation demand sec.	0	60	0
A43	ON °C	-10	10	-5
A44	OFF °C	-10	10	5
A45	Deaeration program	0 = deactivated	1= activated	1
A46	Offset DHW Preheating	0	10	5
A47	Gas heater type	0	3	0
A49	Pump run during DHW request	0 = enabled	1 = disabled	1
A50	Antilegionella function	0 = enabled	1 = disabled	0
A99	Exit menu		,	

INSTALLATION OF ROOM THERMOSTAT/OPEN THERM

It is recommended, and in many cases present by loosening the terminal screws and mandatory, to connect the boiler to a remove it completely - Connect the wires device which monitors and regulates the from the thermostat cable to their respective temperature in the areas served by the boiler slots (Pic. 41) itself. The purpose of this device is to create - Run the cable and hold it in position with the the maximum comfort and maximum energy cable grip at the edge of the case savings possible.

The main heating area can be managed both by a thermostat, and by a remote control electronic device Open-Therm.

The appliance is supplied in TA Thermostatic - Return the electrical panel to the Control configuration; in order to activate Open-Therm control, it is necessary to connect the OT timer thermostat and enable it by accessing to INSTALLER MENU (see page 34) modifying parameter A21 from 0 to 1.

For the corr ect installation of Room Thermostat or Open-Therm, refer to the instructions supplied by the thermostat manufacturer.

To connect the Room Thermostat or OpenTher m to the boiler it is possible to use the supplied two-core cable labelled "TA".

The connection to the boiler PBC is the same both for the Thermostat control and for the Open-Therm (see wire scheme at page 13, Connection x6).

Whenever necessary, replace the "TA" cable and connect it directly to the slot present in the PCB case as follows:

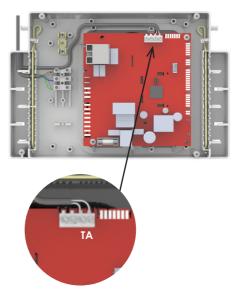
- Power the boiler off

- Remove the boiler iron cover by unscrewing the 4 fastening clips

- Rotate the instrument panel in "Open" position

- Remove the rear instrument panel cover by unscrewing the 4 screws

- Identify the two-pole ter minal board located on the left-hand side of the PCB.


- Disconnect any cable which may be

- Position the cable, running it under the cable gripping tabs on the side of the case

- Close the case cover with the 4 screws, paying attention that all the cables running out of the case are correctly positioned

operational position (with the visible display)

Pic. 41

COMPLETELY DISCONNECT THE DEVICE FROM THE ELECTRICITY SUPPLY BEFORE PERFORMING ANY OPERATION. USE THERMOSTATS COMPATIBLE WITH THE BOILER.

INSTALLATION OF EXTERNAL TEMPERATURE SENSOR

Type and positioning:

Use an NTC 10K ß 3977 pre-wired sensor with protective cover.

insulating, avoiding fixing it directly in contact be installed for all boilers.

with metal structures and surfaces (guttering, arches, frames etc.). Avoid the sensor being even partially immersed in water, ideally Position the sensor outside the area to be ensuring it does not come into direct contact heated facing NORTH/NORTH WEST, or in any with ice formations, either. Where possible, case in a position with minimal exposure to install the sensor in an area protected (e.g. direct sunlight and air currents (corridors, crawl under roof overhang) or partially protected spaces etc.). Fasten the sensor to a wooden from bad weather, ensuring it is at least 3 - 4 or masonry structure which is ther mally m from the ground. The pre-wired sensor can

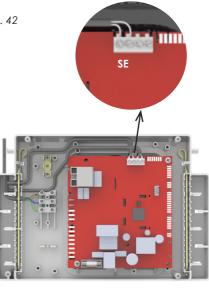
DO NOT USE SENSORS DIFFERENT FROM THOSE SPECIFIED, AS THIS COULD RESULT IN MALFUNCTIONING OF, DAMAGE TO AND EVEN DESTRUCTION OF THE BOILER.

Connect the sensor with insulated, dual-core 40-50 m

cable with sheath of 5 – 6 mm diameter and Wire the cable from the sensor to the correct conductor diameter of between 1 and 1.5 slot (x5) in the terminal block inside the PCB mm; the maximum recommended length is panel:

COMPLETELY CUT THE POWER SUPPLY TO THE BOILER BY TURNING IT OFF AT ITS DEDICATED SWITCH

- Remove the iron cover by loosening the 4 Pic. 42 fastening clips
- Rotate the instrument panel to the open position
- Remove the rear instrument panel cover by unscrewing the 4 screws
- Identify the terminals next to the PCB
- Connect the wires of the sensor cable to
- their respective slots (x5) (Pic. 42).

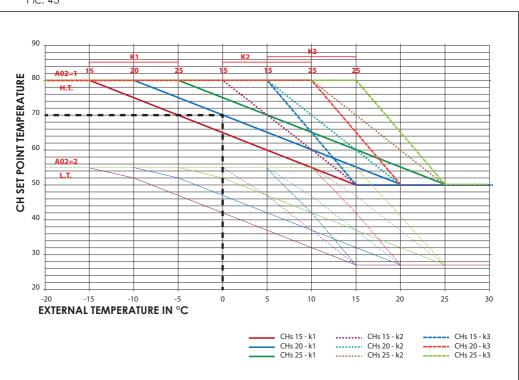

- Run the cable and hold it in position with the cable grip at the edge of the case

- Position the cable, running it under the cable gripping tabs on the side of the case

- Close the case cover with the 4 screws, paving attention that all the cables running out of the case are correctly positioned -Return the electrical panel to the operational position (with the visible display)

EXTERNAL TEMPERATURE SENSOR CONFIGURATION

Access to installer menu (see page 32), enter password of authorization to modify parameters and modify parameter "P07" from 0 to 1.



CONFIGURING THE CLIMATE CURVE FROM THOSE AVAILABLE:

boiler heat the water in the central heating based on the climatic conditions present by circuit to a temperature which depends on configuring the slope of the climate curve the temperature measured by the external via the corresponding parameter on page sensor, in other words the temperature outside P8. It's also possible by pressing buttons "C" the heated building. Running in external and "D" (these lose the function of increasing sensor mode automates the boiler's response and decreasing CH temperature) to make a to climatic variations, allowing a high level of further improvement of climate curve variable home comfort to be maintained while making from 15 to 25. significant savings in gas consumption.

Operation in external sensor mode makes the It is possible to adapt the boiler's response

The configuration of parameter P8 is indicated in the graph (Pic.43)

Pic. 43

Example:

With an external temperature of 0°C a CH flow temperature of 70°C is needed, it's necessary to:

- Set P8 parameter value to 10 (K1)

- Adjust by pressing "C" and "D" buttons the value to 20

SPECIAL FUNCTIONS:

ANTI-FROST:

the boiler is in.

In order to allow this function to fulfil its purpose, the device must be:

- Turned on
- Connected to the mains gas supply
- circuit must be open

• The shut-off valve on the gas supply line Also for DHW circuit, the antifrost function must be open

• No fault conditions must be present

If the temperature measured by the sensor This function is always active, whatever mode on the central heating flow circuit is $< 4^{\circ}$ C, circulation is activated, the diverter valve (when present) switched to the CH circuit and the burner lit at minimum power.

When the temperature measured by the sensor reaches 35°C, the function is • The shut-off valves on the central heating deactivated by turning off the burner and restoring the previous conditions.

> activates at 4° temperature and deactivates 10°.

THIS FUNCTION DOES NOT GUARANTEE COMPLETE AND CERTAIN PROTECTION OF THE SYSTEM FROM TOTAL OR PARTIAL FREEZING!

WHEN CONSIDERED NECESSARY, AND WHEN THE SYSTEM IS CERTAIN TO BE EXPOSED TO LOW TEMPERATURES, IT IS POSSIBLE TO ADD ANTIFREEZE TO THE **CENTRAL HEATING CIRCUIT.**

ONLY USE ANTIFREEZE WHICH IS COMPATIBLE WITH THE CENTRAL HEATING SYSTEM DEVICES AND EQUIPMENT. CAREFULLY FOLLOW THE INSTRUCTIONS FOR USE.

LOCK FUNCTION:

"SUMMER" or "STANDBY / OFF" modes

purpose, the device must be:

Turned on

circuit must be open

• No fault conditions must be present

requests to the boiler in the previous 24 hours. between one ignition and the next. The function stops the devices from locking up, which is possible after long periods of inactivity, by switching the diverter valve (when present) to the central heating circuit and running the circulator device for a predetermined time (35 sec).

CIRCULATOR DEVICE/DIVERTER VALVE ANTI- ANTI FREQUENT IGNITION FUNCTION:

This function is active when the boiler is in The function is active when the boiler is in heating mode (season selector A on winter) and parameter P5 in the "INSTALLER" menu In order to allow this function to fulfil its is enabled. The function does not allow unnecessarily frequent ignitions to satisfy heating requests when the system water • The shut-off valves on the central heating temperature is near that set by the selector.

The parameter P5 is set to 0 when the function is not enabled and can have a value up The function is activated if there are no to 255 indicating the wait time in minutes

THERMOSTAT POST CIRCULATION/VENTILATION FUNCTION

In winter mode:

In order to prevent an overheat stress, in In order to prevent an overheat stress, in is activated.

This function remains active until the This function remains active until the temperature values of heat exchanger temperature values of heat exchanger flashing.

In summer mode:

case at the end of a CH request the heat case at the end of a DHW intake the heat exchanger temperature is too high, a heat exchanger temperature is too high, a heat disposal function by circulator pump ignition disposal function by circulator pump and fan ignition is activated.

decrease. This function is displayed by E06 decrease. This function is displayed by E06 flashing.

DEAERATION FUNCTION

Following each ignition consequent to a power disconnection, boiler starts automatically the circulator pump; this activates ignition cycles in CH and in DHW to remove residual air in the CH circuit.

THIS FUNCTION MAY BE DISABLED BY "A45" PARAMETER

TECHNICAL DATA	U.M.	Eco 24 MR/MN	Eco 28 MR/MN	Eco 32 MR/MN
Category		II2H3P	II2H3P	II2H3P
PIN		CE-1299CS0116	CE-1299CS0116	CE-1299CS0116
NOx Class		3	3	3
Туре		B22p-C12-C32-C42	B22p-C12-C32-C42	B22p-C12-C32-C42
Gas used		-C52-C62 G20 G31	-C52-C62 G20 G31	-C52-C62 G20 G31
Heat input max.	kW	26,0	30,0	33
Heat input min.	kW	9,0	10,0	11,2
Heat output max.	kW	24,92	27,92	31
Heat output min.	kW	8,8	9,63	9,51
Efficiency	%	92,7	92,9	93,2
Efficiency at 30% P	%	91,0	90,9	90,6
Exhaust gas T. (G20 20mbar) 20 °C	°C	128,0	129	146
Fuel consumption	G20 m ³ /h	2,6	3,2	3,57
	G31 kg/h	1,95	2,3	2,5
HEATING		·		
CH water temperature adjustment range	°C	27-80	27-80	27-80
Expansion tank	1	6,0	6+6	6+6
Expansion tank pressure	bar	1,0	1,0	1,0
Min/Max operating pressure	bar	0,8 - 3,0	0,8 - 3,0	0,8 - 3,0
Max Circulator head	mwc	5,0	6,0	6,5
DOMESTIC HOT WATER				
Continuous draw ∆T 25°C	l/min	13,5	14,5	16,6
Max DHW pressure	bar	10,0	10,0	10,0
Min DHW pressure	bar	0,5	0,5	0,5
Min/max DHW temp adjustment	°C	30-60	30-60	30-60
ELECTRICAL CHARACTERISTICS		·		
Voltage/Frequency	V/Hz	230/50	230/50	230/50
Power	w	152	152	155
IP rating	IP	X4D	X4D	X4D
DIMENSIONS AND CONNECTIONS				
Width	mm	456	456	456
Height	mm	690	690	690
Depth	mm	240	332	332
Weight	kg	35	37	38
Flow/Return	In	3/4	3/4	3/4
DHW in/out	In	1/2	1/2	1/2
Gas supply	In	3/4	3/4	3/4
Concentric (coaxial) intake/exhaust gas pipe diameter	mm	60-100	60-100	60-100
Min-max concentric pipe length	m	0,5-5 + curva	-	0,5-5 + curva
Split (separate) intake/flue pipe diameter	mm	80/80	80/80	80/80
Max pressure drop with separate pipes (intake + flue evacuation)	mbar	1,7	1,75	1,45
MAIN GAS OPERATING PRESSURE				
G20 max.	mbar	12,5	13	11,6
G20 min.	mbar	1,4	1,2	1,2
G31 max.	mbar	37	37	37
G31 min.	mbar	5,2	4,8	4,7
Ø G20 nozzles	mm	1,3	1,3	1,3
Ø G31 nozzles	mm	0,78	0,77	0,77

9

3)

Operational headquarters: Loc. Campogrande 13, 29013 CARPANETO PIACENTINO(PC), Italy phone +39 0523 850513 - info@kleinekessel.com - www.produzionecaldaie.com